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Abstract. Let T be a self-affine tile that is generated by an expanding integral matrix
A and a digit set D. It is known that many properties of T are invariant under the Z-
similarity of the matrix A. In [LW1] Lagarias and Wang showed that if A is a 2 × 2
expanding matrix with |det(A)| = 2, then the Z-similar class is uniquely determined by
the characteristic polynomial of A. This is not true if |det(A)| > 2. In this paper we give
complete classifications of the Z-similar classes for the cases |det(A)| = 3, 4, 5. We then
make use of the classification for |det(A)| = 3 to consider the digit set D of the tile and
show that µ(T ) > 0 if and only if D is a standard digit set. This reinforces the conjecture
in [LW3] on this.

1. Introduction

Let A be an expanding integral matrix in Mn(Z), i.e., all its eigenvalues λi have modulus
> 1. Let |det(A)| = q and let D = {d1, . . . , dq} ⊆ Zn be a set of q distinct vectors,
called a q-digit set. The affine maps wj defined by

wj (x) = A−1(x + dj ), 1 ≤ j ≤ q,
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are all contractions under a suitable norm in Rn (see pp. 29–30 of [LW2]). The family
{wj }q

j=1 is called an iterated function system (IFS) and there is a unique nonempty
compact set satisfying T = ⋃q

j=1 wj (T ) [H], [F]. T is called the attractor of the system
and is explicitly given by

T := T (A, D) =
{ ∞∑

i=1

A−i dji : dji ∈ D

}
.

Let µ(T ) denote the Lebesgue measure of T . We call T an integral self-affine tile if
µ(T ) > 0. It is known that the measure µ(T ) is an integer [LW3, Theorem 1.1], but
in general it is difficult to determine if it is positive, in particular, if µ(T ) = 1 [B],
[GM], [LW1]–[LW5]. A natural approach for this is to consider the Z-similarity of the
matrices [LW4].

We say that A, B ∈ Mn(Z) are Z-similar, denoted by A ∼ B, if there exists a
unimodular matrix P ∈ Mn(Z) (i.e., P is invertible and |det(P)| = 1) such that PAP−1 =
B. Z-similarity is an equivalence relationship and determines equivalence classes that
are called Z-similar classes. The measure problem µ(T ) > 0 is invariant under Z-
similarity. Other properties of the tiles such as connectedness [BG], [GH], [HSV], [KL],
the dimension of the boundary [KLSW], [SW], and the tiling problem [LW2] are all
invariant under Z-similarity.

The Z-similarity classification of expanding integral matrices was first studied by
Lagarias and Wang [LW1] using the characteristic polynomials (c.p.). They showed that
each integral expanding polynomial (all roots have modulus > 1) f (x) = x2 + ax + q,
|q| = 2, corresponds to exactly one Z-similar class of expanding matrices A ∈ M2(Z).
Since there are six such polynomials, there are only six Z-similar classes of 2×2 integral
matrices with |det(A)| = 2.

In this paper we consider the classification problem of A ∈ M2(Z) with |det(A)| =
3, 4, 5. The situation is considerably more complicated. For |det(A)| = 3, there are ten
characteristic polynomials. We have

Theorem 1.1. Suppose A ∈ M2(Z) is expanding with |det(A)| = 3. Let f (x) be the
characteristic polynomial,

(i) if f (x) �= x2 + 3, then A is Z-similar to the companion matrix C of f (x),

(ii) if f (x) = x2 + 3, then A is Z-similar to
[

1 2
−2 −1

]
or C .

For |det(A)| = 4 and 5, we summarize the results in the following two theorems. The
details are in Theorems 4.1, 4.2 and 4.4 and Theorems 5.1 and 5.3.

Theorem 1.2. There are fourteen characteristic polynomials for the expanding matri-
ces A ∈ M2(Z) with |det(A)| = 4. Four of them have unique Z-similar classes; seven
of them have two Z-similar classes; for f (x) = x2 − 4, there are three Z-similar
classes: [

2 n

0 −2

]
for n = 0, 1, 2;
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for f (x) = (x ± 2)2, there are infinitely many Z-similar classes:[
∓2 |n|
0 ∓2

]
for n ∈ Z.

Theorem 1.3. There are eighteen characteristic polynomials for the expanding matri-
ces A ∈ M2(Z) with |det(A)| = 5. Fourteen of them have unique Z-similar classes. The
other four are x2 ± 5 and x2 ± 2x + 5, each of them has two Z-similar classes.

The proof of the theorems is inspired by [LW1] and [LW4]. First we observe from
the theorem of Latimer and MacDuffee [N] that for a given irreducible integral monic
polynomial f (x) and a root θ , there is a one-to-one correspondence between the ideal
classes of the ring Z[θ ] and the Z-similar classes of A ∈ Mn(Z) that have f (x) as c.p.
For the classification of the ideals of Z[θ ], we make use of two approaches: one is to
use the theorem of Latimer and MacDuffee and a table in [Mo] of the number of the
ideal classes of Z[θ ] in the quadratic field Q[θ ]; the other approach is to use a reduction
scheme in [LW1] to reduce A to Z-similar matrices of a checkable form.

Let A ∈ Mn(Z) be expanding with |det(A)| = q and let D ⊆ Zn be a q-digit set. Let
L = Z [A, D] be the lattice generated by D, AD, . . . , An−1 D. D is called a complete set
of coset representatives of L/A(L) if

L =
q⋃

i=1

(di + A(L)) and (di + A(L)) ∩ (dj + A(L)) = ∅ for i �= j.

We say that D is a standard digit set (with respect to A) if D is a complete set of coset
representatives of L/A(L); otherwise, D is called a nonstandard digit set. It is easy to
show that if q = 2, then T is always a tile and the D is standard. In [LW3] Lagarias and
Wang proved that if q is a prime and

qZn �⊆ A2(Zn), (1.1)

then µ(T (A, D)) > 0 if and only if D is a standard digit set. They also conjecture that
condition (1.1) is redundant [LW3]. We therefore consider the self-affine tiles for the
case of |det(A)| = 3 that is not covered by (1.1):

f (x) = x2 ± 3 and x2 ± 3x + 3.

Making use of Theorem 1.1 and a criterion of [LW3], we give an explicit expression of
such digits and show that all the tiles are generated by standard digit sets. This reinforces
the conjecture in [LW3].

We organize the paper as follows. In Section 2 we give the relevent results in number
theory and some preliminary results concerning self-similar tiles. The classifications of
Theorems 1.1, 1.2, and 1.3 are given in Sections 3, 4, and 5, respectively. In Section 6
we make use of the classification for det(A) = 3 to determine the digit sets D such that
the invariant set T (A, D) is a tile. In Section 7 we make use of the classification to sort
out those A that are Z-similar to the self-similar matrices, the most well-known class in
the theory. The results of the paper are summarized as tables in the Appendix.
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2. Preliminaries

We first give two simple propositions that are used throughout the section.

Proposition 2.1. Let A =
[

a b
c d

]
∈ M2(Z). Then

(i) A is similar to

[
a −b

−c d

]
,

[
d c

b a

]
,

[
d −c

−b a

]
,

[
a + c −a − c + b + d

c d − c

]
.

(ii) If a, d �= 0 and c = ±1 or b = ±1, then A ∼
[

0 ×
× ×

]
.

Proof. (i) Take P =
[

−1 0
0 1

]
,
[

0 1
1 0

]
,
[

0 −1
1 0

]
,
[

1 1
0 1

]
, then PAP−1 are the four ma-

trices listed in the proposition.

(ii) For c = 1, we take P =
[

0 1
1 d

]
; for b = 1, we take P =

[
−d 1

1 0

]
. Then (i)

concludes the proof.

Proposition 2.2. Let A ∈ M2(Z) with c.p. f (x) = x2 − ax + q, q is a prime. Suppose

A ∼
[

0 b12
b21 b22

]
, then A ∼ C , the companion matrix of f (x).

Proof. By using Z-similarity and comparing the c.p., it is easy to see that b22 =
a, b12b21 = −q so that A ∼

[
0 ±1

∓q a

]
and

[
0 ±q

∓1 a

]
. Also observe that C =

[
0 1

−q a

]
and ∼

[
0 q

−1 a

]
by taking P =

[
−a 1
−1 0

]
. The lemma now follows from Proposition 2.1.

We will need some facts concerning the polynomials and the algebraic fields. The
first one can be found in [KL].

Proposition 2.3. Let f (x) = xm +am−1xm−1 +· · ·±q, where ai ∈ Z and q is a prime.
Suppose all the roots of f (x) have modulus > 1, then f (x) is irreducible in Q[x] and
the roots are simple.

Let R be a ring. We say that the two ideals S and T of R are in the same class if there
exist two nonzero elements α, β ∈ R such that αS = βT . This relationship determines
the ideal classes of R.

Theorem 2.4 (Latimer and MacDuffee [N]). Let f (x) ∈ Z[x] be an irreducible monic
polynomial of degree n and let θ be a root of f (x). Then there is a one-to-one correspon-
dence between the ideal classes of the ring Z[θ ] and the Z-similar classes of matrices
A ∈ Mn(Z) such that f (A) = 0.
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Table 1. Class numbers.

m hm

3, 5, 6, 13, 17, 21, 29, −1, −2, −3, −7, −11, −19 1
−5, −15 2

Proposition 2.5 [Ma, p. 15]. Let m be a square free integer and let Q[
√

m] be the
quadratic field (i.e., the rational field generated by

√
m). Then the set of algebraic

integers R in Q[
√

m] is

R = {a + b
√

m: a, b ∈ Z} if m ≡ 2 or 3 (mod 4), (2.1)

R =
{

a + b
√

m

2
: a, b ∈ Z, a ≡ b (mod 2)

}
if m ≡ 1 (mod 4). (2.2)

The number of the ideal classes of the above rings R ⊆ Q[
√

m] is tabled on pp. 313–
345 of [Mo]. In Table 1 we list those that we will need. Here m is a square-free integer
and hm is the class number.

Let A ∈ M2(Z) be an expanding matrix and let f (x) be its c.p. Then the root θ

of f (x) can be written as θ = 1
2 (u + v

√
m), u, v, m ∈ Z. In the next three sections

we classify the Z-similar classes of A with |det(A)| = 3, 4, 5 using the following two
methods:

Method I. If f is irreducible and Z[θ ] = R as in (2.1) or (2.2), then we can determine
the number of Z-similar classes of f by applying the theorem of Latimer and MacDuffee
and Table 1.

Method II. If the above conditions on f are not satisfied, then we use the following

scheme from [LW1]. Let A =
[

a11 a12
a21 a22

]
and let p(A) := −a11a22.

(a) If p(A) > 0, we consider the unimodular matrices P =
[

1 −ε

0 1

]
and P ′ =[

1 0
−ε′ 1

]
where ε := sign(a11a21), ε′ := sign(a22a12). Let A1 = PAP−1 or

P′A(P ′)−1, then

p(A1) = p(A) + a2
21 + εa21(a22 − a11) (2.3)

or, respectively

p(A1) = p(A) + a2
12 + ε′a12(a11 − a22). (2.3)′

We aim to have p(A1) < p(A), so as to reduce A to a Z-similar matrix with
smaller p(·). We can repeat this k times to obtain a Z-similar matrix Ak with
p(Ak) equal to a few specific cases.

(b) For all these specific cases, we determine their Z-similar classes individually.
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The following proposition enables us to list all the expanding characteristic polyno-
mials of degree 2 [BG].

Proposition 2.6. Suppose A ∈ M2(Z) has c.p. f (x) = x2 +ax+q with a, q ∈ Z, q �=
0. Then A is expanding if and only if |a| ≤ q for q > 0 and |a| ≤ |q| − 2 for q < 0.

The following lemma is easy to prove [KL].

Lemma 2.7.

(a) Let p(x) and p̃(x) denote the characteristic polynomials of A, −A ∈ Mn(Z),
respectively. Then p̃(x) = (−1)n p(−x).

(b) Let A ∈ Mn(Z) be an expanding matrix with |det(A)| = q and let D =
{d1, . . . , dq} ⊆ Rn . Suppose there exists a vector v ∈ Rn such that D = v − D.
Then T (−A, D) = T (A, D) − (A − A−1)−1v.

Remark. By the lemma we only need to consider one of the expanding polynomials
f (x) = x2 ± ax + q in the Z-classification.

3. Expanding Matrices with Determinant ±3

For an expanding matrix A ∈ M2(Z) with |det(A)| = 3, it is easy to obtain from
Proposition 2.6 that the c.p. f (x) is one of the following:

(I) x2 − 3, x2 ± 2x + 3,
(II) x2 ± x − 3, x2 ± x + 3, x2 ± 3x + 3,

(III) x2 + 3.

Theorem 3.1. Suppose an expanding matrix A ∈ M2(Z) has c.p. f (x) in (I) or (II).
Then A is Z-similar to the companion matrix C of f (x).

Proof. The polynomial f (x) = x2 − 3 has a root θ = √
3 and Z[θ ] is of the form

(2.1). Proposition 2.5 asserts that Z[θ ] is the set of algebraic integers in the quadratic
field Q[

√
3], and it has only one ideal class (see Table 1). Therefore, there is only one

similarity class for f by Theorem 2.4, and it is represented by C .
For f (x) = x2 ± 2x + 3 in (I), we can consider the roots θ = ±1 + √−2 and the

same argument applies.
For the polynomials in (II), we consider the respective roots θ = 1

2 (±1 + √
13), 1

2 (±1
+ √−11), 1

2 (±3 + √−3). In each of the cases, R = Z [θ] is of the form (2.2). By
Proposition 2.5, they are the sets of algebraic integers in the quadratic fields Q[

√−3],
Q[

√−11], Q[
√

13], respectively. Again there is only one ideal class of Z[θ ] from Table 1
and Theorem 2.4 applies.

We remark that for x2 + 3, θ = √−3 is a root, and Z[θ ] = {a + b
√−3: a, b ∈ Z}

is not of the form R in (2.1) and (2.2). Hence the table given for such R does not
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necessarily give the number of ideal classes of Z[θ ]. To determine the Z-similar classes,
we use Method II as outlined in the last section.

Lemma 3.2. Let A = [aij] ∈ M2(Z) be expanding and have c.p. f (x) = x2 + 3. Then
a11 = −a22 and p(A) = a2

11 ≥ 0. In the case p(A) > 0, we have 0 < |a21| ≤ |a11| + 1
or 0 < |a12| ≤ |a11|.

Proof. Since f (x) = x2 +3 = x2 −(a11 +a22)x +det(A), it follows that a11 +a22 = 0
so that p(A) = a2

11 ≥ 0. To prove the second part, we first observe that a12, a21 �= 0.
Otherwise, we will have 3 = det(A) = a11a22 = −a2

11 which is impossible. For the
remaining inequalities, we assume the contrary holds, i.e., |a21| > |a11|+1, |a12| > |a11|,
then

|a12a21| ≥ (|a11| + 2)(|a11| + 1) = |a11|2 + 3|a11| + 2.

It follows that 3 = |det A| ≥ |a12a21| − |a11|2 ≥ 5 and is impossible.

Theorem 3.3. Suppose A = [aij] ∈ Mn(Z) and has c.p. f (x) = x2 + 3, then A is

either Z-similar to the companion matrix C or
[

1 2
−2 −1

]
.

Proof. It is clear that the two matrices above have c.p. f (x) = x2 + 3. To show that

they are not Z-similar, we let P =
[

a b
c d

]
with det(P) = ad − bc = 1 (same argument

for −1). Then P−1 =
[

d −b
−c a

]
. A direct computation shows that P

[
1 2

−2 −1

]
P−1 =[

d(a − 2b) − c(2a − b) ×
× ×

]
. Note that d(a − 2b) − c(2a − b) = 1 + 2(bc − db − ac) �= 0.

It follows that
[

1 2
−2 −1

]
and C =

[
0 1

−3 0

]
are not Z-similar.

Now to show that there are only two similarity classes, we adopt Method II of the
previous section. Lemma 3.2 says that p(A) ≥ 0. For p(A) = 0, we have A ∼ C by
Proposition 2.2. For p(A) > 0, we divide our consideration into two cases:

(i) If |a11| = 1, A is Z-similar to
[

1 2
−2 −1

]
or

[
1 4

−1 −1

]
(and their Z-similar variations

as in Proposition 2.1). The second matrix is Z-similar to
[

0 ×
× ×

]
by Proposition 2.1, and

hence to C by Proposition 2.2.
(ii) If |a11| > 1, we consider the two cases in Lemma 3.2. For 0 < |a21| ≤ |a11| + 1,

by observing that a11 = −a22, we can rewrite (2.3) as

p(A1) = p(A) + a2
21 + εa21(a22 − a11) = p(A) + a2

21 − 2|a21 ‖ a11|.

It is elementary to show that p(A1) < p(A). For the other case, 0 < |a12| ≤ |a11|, we
can draw the same conclusion by using the alternative form (2.3)′: p(A1) = p(A) +
a2

12 + ε′a12(a11 − a22).

We continue this process to construct Z-similar matrices Ak with decreasing p(Ak)

until p(Ak) = 0 or p(Ak) = 1 as in case (i), then we conclude that f (x) only have the
two Z-similar classes as listed.
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4. Expanding Matrices with Determinant ±4

By Proposition 2.6, there are 14 possible c.p.’s for the expanding matrices A ∈ M2(Z)

with |det(A)| = 4. They are

(I) x2 ± 3x + 4, x2 ± x − 4,
(II) x2 + 4, x2 ± x + 4, x2 ± 2x + 4, x2 ± 2x − 4,

(III) x2 − 4, x2 ± 4x + 4.

Theorem 4.1. Each A with c.p. in (I) is Z-similar to its companion matrix C .

Proof. For the two set of polynomials in (I), we consider the respective roots θ =
1
2 (±3 + √−7), 1

2 (±1 + √
17). Then Z[θ ] = R are of the form (2.2) and hence are

the set of algebraic integers in the quadratic fields Q[
√−7], Q[

√
17], respectively, by

Proposition 2.5. From Table 1, there is only one ideal class of R = Z [θ ]. The conclusion
follows by Theorem 2.4.

Theorem 4.2. Each c.p. in (II) has two Z-similarity classes of expanding matrices. The
representatives of these classes, besides the companion matrix C , are listed according

to the ordering in (II) as
[

0 2
−2 0

]
,
[

±1 2
−3 ∓2

]
,
[

0 2
−2 ∓2

]
,
[

0 2
2 ∓2

]
.

Proof. It is direct to check that the list of matrices has the corresponding c.p.’s in (II). To
check that they are not Z-similar to the companion matrices, we only try the case x2−x+4

where A ∼
[

−1 2
−3 2

]
and C =

[
0 1

−4 1

]
. The others will follow from the same pattern of

proof. We let P =
[

a b
c d

]
with det(P) = ad − bc = ±1. If CP = PA, then we have[

c d
× ×

]
=

[
−a − 3b 2(a + b)

× ×
]
. By comparing the two columns and plugging in ad−bc =

±1, we have a = 1
4 (−3b ± √−15b2 ± 8) /∈ Z. This is a contradiction, and A �∼ C .

Now we show that the c.p. has exactly two Z-similarity classes. We first consider
x2±x +4. The respective roots are θ = 1

2 (∓1+√−15) and Z[θ ] = R as in (2.2). Hence
Z[θ ] is the set of algebraic integers in the quadratic field Q[

√−15], by Proposition 2.5.
By Table 1, there are two ideal classes of Z[θ ].

For the rest of the cases, Method I does not apply and we use the lengthier Method II
in each case:

(A) x2 + 4. The proof is identical to the case x2 + 3 in Theorem 3.3. We only need
to provide a check for the case |a11| = 0, 1, 2 as in the proof of case (i) in Theorem 3.3:

If |a11| = 0, it can be shown that there are two Z-similar classes: C,
[

0 2
−2 0

]
. Now

suppose that |a11| = 1. It is easy to derive that the only case is A ∼
[

±1 5
−1 ∓1

]
(and its

Z-similar variations as in Proposition 2.1). By Proposition 2.1, A ∼ B with b11 = 0.

In the case |a11| = 2, we have the possibilities A =
[

2 ±8
∓1 −2

]
,
[

2 ±4
∓2 −2

]
(and their

Z-similar variations as in Proposition 2.1). In all cases, by Proposition 2.1, A ∼ B with
b11 = 0, which is the first case.
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(B) x2 ± 2x + 4, x2 ± 2x − 4. We only consider the case x2 − 2x + 4. Firstly, we
make a modification of Proposition 2.2: Suppose A ∼ B with b11 = 0, then b22 = 2,
(b12, b21) = (±1, ∓4), (±4, ∓1), (±2, ∓2). It is easy to check by Proposition 2.1 that

there are two Z-similar classes: C =
[

0 1
−4 2

]
and

[
0 2

−2 2

]
.

We now try to make use of p(A) = −a11a22 to reduce A to a Z-similar matrix B
with b11 = 0. Since the middle term of the c.p. implies that a11 + a22 = 2, we have
4 = a2

11 + 2a11a22 + a2
22 ≥ 4a11a22 and hence p(A) = −a11a22 ≥ −1. We check on

each case:
(i) If p(A) = −1, then a11a22 = 1 and a12a21 = −3. It follows that a11 = a22 = 1

and one of the a12 or a21 equals ±1. We can use Proposition 2.1 to transform A into a
Z-similar B with b11 = 0.

(ii) If p(A) = 0, then A is already in the form of B.
(iii) If p(A) > 0 and |a11| = 1, then a11a22 = −3, a12a21 = −7. The same argument

as in (i) applies.
(iv) If p(A) > 0 and |a11| = 2, we claim that a11 �= 2. Otherwise, by comparing the

middle term of the c.p., we have a22 = 0 so that p(A) = 0. Hence we only have a11 = −2
and a22 = 4, and a12a21 = −p(A)−det(A) = −12. We have the following possibilities

for A:
[

−2 ±12
∓1 4

]
,
[

−2 ±6
∓2 4

]
,
[

−2 ±4
∓3 4

]
, and their transposes. By Proposition 2.1, they

can all be reduced to the form of B with b11 = 0.
(v) If p(A) > 0 and |a11| = 3, we have (a11, a22) = (3, −1), (−3, 5). Then

a12a21 = −p(A) − det(A) = −7, −19. We have the following possibilities for A:[
3 ±7

∓1 −1

]
,
[

−3 ±19
∓1 5

]
, and their transposes. Again they can be transformed into the re-

quired B by Proposition 2.1.
(vi) If p(A) > 0 and |a11| = 4, we have (a11, a22) = (4, −2), (−4, 6). Then

a12a21 = −p(A) − det(A) = −12, −28. We have the following possibilities for

A:
[

4 ±12
∓1 −2

]
,
[

4 ±6
∓2 −2

]
,
[

4 ±4
∓3 −2

]
,
[

−4 ±28
∓1 6

]
,
[

−4 ±14
∓2 6

]
,
[

−4 ±7
∓4 6

]
, and their trans-

poses. They can be transformed into the required B by Proposition 2.1. To see
[

−4 ±14
∓2 6

]
∼[

0 −2
2 2

]
, one needs to apply the last similarity in Proposition 2.1(i) (twice).

(vii) If p(A) > 0 and |a11| ≥ 5, we can use the same argument as in Lemma 3.2 to
show that either 0 < |a12| ≤ |a22| or 0 < |a21| ≤ |a11| + 1. For 0 < |a21| ≤ |a11| + 1,
we let |a11| = 1 + l, l ≥ 4. Then

p(A1) = p(A) + a2
21 + εa21(2 − 2a11)

= p(A) + (a2
21 − |a21 ‖ a11| − |a21|) + (2εa21 − l|a21|)

< p(A).

For 0 < |a12| ≤ |a22|, we let |a22| = 2 + k, k ≥ 1 (since |a11| ≥ 5), then using the
alternate expression (2.3)′ of p(A), we have

p(A1) = p(A) + a2
12 + ε′a12(2 − 2a22)

= p(A) + (a2
12 − |a12 ‖ a22|) + (2ε′a12 − (2 + k)|a12|)

< p(A).
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In either case we can reduce A to a Z-similar matrix Ak in the form of (i)–(vi) and the
theorem follows.

It remains to consider the c.p. in group (III).

Lemma 4.3.

(i)
[

2 m
0 −2

]
∼

[
2 n
0 −2

]
if and only if n ≡ ±m mod 4),

(ii)
[

2 m
0 2

]
∼

[
2 n
0 2

]
if and only if |m| = |n|.

Proof. (i) To prove the first assertion, we let P =
[

a b
c d

]
with det(P) = ad−bc = ±1.

If they were Z-similar, then P
[

2 n
0 −2

]
=

[
2 m
0 −2

]
P . This reduces to

[
2a na − 2b
2c nc − 2d

]
=[

2a + mc 2b + md
−2c −2d

]
. It follows that c = 0, ad = ±1, and na = 4b + md. Hence, we must

have n ≡ ±m mod 4). Conversely, for n ≡ ±m mod 4), we can take P =
[

1 1
4 (n ∓ m)

0 ±1

]
so that

[
2 n
0 −2

]
∼

[
2 m
0 −2

]
.

(ii) Let P =
[

a b
c d

]
with det(P) = ad − bc = ±1. Then

[
2 n
0 2

]
= P

[
2 m
0 2

]
P−1

=
[

∓acm + 2 ±a2m
∓c2m ±acm + 2

]
implies that ±a2m = n and ∓c2m = 0. Thus if m = 0, then

n = 0 and (ii) follows. If m �= 0, then c = 0 so that ±1 = ad − bc = ad. Therefore,
a = ±1 implies n = ±a2m = ±m. The sufficiency follows from Proposition 2.1.

Theorem 4.4. For x2 − 4, the Z-similar classes are
[

2 n
0 −2

]
for n = 0, 1, 2; and for

x2 ± 4x + 4, they are
[

∓2 |n|
0 ∓2

]
for all n ∈ Z.

Proof. For A with characteristic polynomial p(x) = x2 − 4 or (x − 2)2, let v =
[

x
y

]
be

an eigenvector of 2, then v can be chosen as a vector with integral entries x, y such that

gcd(x, y) = 1. Hence, there exist m, m ′ ∈ Z such that xm − ym′ = 1. Let P =
[

x m ′
y m

]
.

Then a direct calculation shows that P−1AP =
[

m −m ′
−y x

]
A

[
x m ′
y m

]
=

[
2 n
0 ±2

]
for some

n ∈ Z. We note that, by Proposition 2.1,
[

2 n
0 ±2

]
∼

[
2 −n
0 ±2

]
. Also, using P =

[
1 1
0 −1

]
,

we get
[

2 1
0 −2

]
∼

[
2 3
0 −2

]
. Then Lemma 4.3 completes the first part of the proof.

For A with characteristic polynomial p(x) = (x + 2)2, we proceed as above with

v being an eigenvector of −2 so that A ∼
[

−2 n
0 −2

]
for some n ∈ Z. We again use

Lemma 4.3 to conclude the proof.

Remark. The argument in the above proof works for any quadratic characteristic
polynomial with an integer eigenvalue λ of multiplicity 2.
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5. Expanding Matrices with Determinant ±5

By Proposition 2.6, we can write down the 18 possible c.p.’s f (x) for the expanding
matrices A ∈ M2(Z) with |det A| = 5. They are

(I) x2 ± 3x − 5, x2 ± 2x − 5, x2 ± x − 5, x2 ± x + 5, x2 ± 3x + 5,

x2 ± 4x + 5, x2 ± 5x + 5,
(II) x2 ± 5, x2 ± 2x + 5.

Theorem 5.1. Suppose an expanding matrix A ∈ M2(Z) has c.p. f (x) in (I). Then A
is Z-similar to the companion matrix of f (x).

We omit the proof because it is similar to that of Theorem 3.1. Our main proof is for
the polynomials in group (II).

Lemma 5.2. Let A ∈ M2(Z) be expanding with c.p. f (x) = x2 +ax ±5. If p(A) > 0,
then either 0 < |a12| ≤ |a22| or 0 < |a21| ≤ |a11| + 2.

Proof. Note that a12, a21 �= 0. Otherwise, a12a21 = 0 implies that ±5 = det A =
a11a22, and a11 and a22 are eigenvalues of A. It follows that one of the eigenvalues has
modulus 1, which contradicts that A is expanding.

The inequality can be proved as in the proof of Lemma 3.2.

Theorem 5.3. Each c.p. f (x) in (II) corresponds to two Z-similar classes. Besides
the companion matrix, the representing matrices of the four polynomials are listed as
follows according to the order in (II):[

2 3
−3 −2

]
,
[

1 2
2 −1

]
,
[

−1 2
−2 −1

]
,
[

1 2
−2 1

]
.

Proof. We claim that the matrices listed are not Z-similar to the corresponding com-

panion matrices. To check the first one we let P =
[

a b
c d

]
with det(P) = 1 (or

−1). Then for A =
[

2 3
−3 −2

]
, PAP−1 =

[
× −b(2a − 3b) + a(3a − 2b)

× ×
]

�=
[

× 1
× ×

]
be-

cause otherwise, 1 = −b(2a − 3b) + a(3a − 2b) = 3a2 + 3b2 − 4ab will imply that
a = 1

3 (2b ± √−5b2 + 3) /∈ Z, a contradiction.

For the second matrix, we see that PAP−1 =
[

d(a + 2b) − c(2a − b) ×
× ×

]
�=[

0 ×
× ×

]
because da + 2db − 2ac + bc = 1 + 2bc + 2db − 2ac �= 0.

The same method works for the remaining matrices.
We next show that each of the polynomials in (II) corresponds to only two Z-similar

classes.

(A) x2 + 5. Note that θ = √−5 is a root of x2 + 5. By Method I and Table 1 in
Section 2, we see that the class number of Q(

√−5) is 2.

(B) x2 − 5. We use Method II. We see that a11 = −a22 and p(A) = a2
11 ≥ 0. We

divide our consideration into parts:
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(i) If p(A) = 0, then Proposition 2.2 implies that A is Z-similar to the companion
matrix.

(ii) If p(A) > 0 and |a11| = 1, then p(A) = a2
11 = 1 implies that a12a21 =

−p(A)−det(A) = 4. We can list all the possible cases for A, and check by Proposition 2.1

to conclude that A ∼
[

1 2
2 −1

]
or

[
0 ×
× ×

]
(which is Z-similar to C by Proposition 2.2).

(iii) If p(A) > 0 and |a11| = 2, then p(A) = a2
11 = 4 implies that a12a21 =

−p(A) − det(A) = 1. We arrive at the same conclusion as (i).
(iv) If p(A) > 0 and |a11| ≥ 3, then we use Lemma 5.2 and part B(vii) in the proof

of Theorem 4.2 to reduce A to a Z-similar matrix in (i)–(iii).

(C) x2 ± 2x + 5. By Lemma 2.7, we only need to consider x2 − 2x + 5 . Note
that a11 + a22 = 2 implies that p(A) = −a11a22 ≥ −1. We consider the following
cases:

(i) If p(A) = −1, then a11 = a22 = 1 and a12a21 = −p(A) − det(A) = −4.

By checking the possible cases, A is either Z-similar to
[

1 2
−2 1

]
or

[
0 ×
× ×

]
, which is

Z-similar to C by Proposition 2.2.
(ii) p(A) = 0. Then A ∼ C by Proposition 2.2.
(iii) p(A) > 0 and |a11| = 1. It is easy to show that a11 = −1, so that a22 = 3

and a12a21 = −p(A) − det(A) = −8. A is of the form
[

−1 ∓8
±1 3

]
,
[

−1 ∓4
±2 3

]
(and their

transposes). The first matrix is Z-similar to
[

0 ×
× ×

]
by Proposition 2.1. For the second

one, we note that
[

1 −1
0 1

] [
−1 4
−2 3

] [
1 1
0 1

]
=

[
1 2

−2 1

]
.

(iv) p(A) > 0 and |a11| = 2. The same argument as above shows that a11 = −2,
a22 = 4 and a12a21 = −p(A) − det(A) = −13. Therefore Proposition 2.1 implies that

A ∼
[

0 ×
× ×

]
, which is Z-similar to C .

(v) p(A) > 0 and |a11| = 3. Then (a11, a22) = (3, −1), (−3, 5) which implies
that a12a21 = −p(A) − det(A) = −8, −20. For all the possible A, except the fol-

lowing two, they are quite easy to check that they are similar to
[

0 ×
× ×

]
by Proposi-

tion 2.1. The two less straightforward cases are
[

3 −4
2 −1

]
∼

[
1 2

−2 1

]
(Proposition 2.1)

and
[

1 −2
0 1

] [
−3 10
−2 5

] [
1 2
0 1

]
=

[
1 2

−2 1

]
.

(vi) p(A) > 0 and |a11| = 4. It is straightforward to check (a11, a22) = (−4, 6), (4,

−2). Hence a12a21 = −p(A) − det(A) = −29, −13. For all possible A’s, it can be

shown that A ∼
[

0 ×
× ×

]
.

(vii) p(A) > 0 and |a11| > 4. We use Lemma 5.2 and proceed as in part B(vii) of the
proof of Theorem 4.2 to reduce A to a Z-similar matrix in (i)–(vi).

6. Characterization of 3-Digit Tiles in R2

Let A ∈ Mn(Z) be expanding with |det(A)| = q and let D = {d1, . . . , dq} ⊆ Zn be a q-
digit set. We can always reduce to the case 0 ∈ D by a translation. Assume that T (A, D)

is a tile. Let L be the lattice generated by D, AD, . . . , An−1 D. The quotient group
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L/A(L) has q distinct cosets; D ⊂ L is called a complete set of coset representatives of
L/A(L) if

L =
q⋃

i=1

(di + A(L)) and (di + A(L)) ∩ (dj + A(L)) = ∅ for i �= j.

For simplicity, we just say that D is complete in L/A(L); in this case µ(T (A, D)) > 0
[B]. It is known that if the columns of a matrix B ∈ M2(Z) form a basis of L , then
for D̃ = B−1 D and Ã = B−1AB ∈ Mn(Z), Z[ Ã, D̃] = Zn with 0 ∈ D̃ [LW3].
Here Z[ Ã, D̃] is the lattice generated by D̃, ÃD̃, . . . , Ãn−1 D̃. Note that T ( Ã, D̃) =
B−1T (A, D). We say that D is a standard digit set (with respect to A) if D is complete
in L/A(L); otherwise, D is called a nonstandard digit set. Then D is a standard digit
set (with respect to A) is equivalent to D̃ is a standard digit set with respect to Ã, i.e.,
D̃ is complete in Zn/ Ã(Zn). It is clear that if D is a standard digit set and if D′ = aD
for some a ∈ Z\{0}, then D′ is also a standard digit set. Also note that if D is complete
in Zn/A(Zn), then D is standard. However, the converse is not true (see Remark 1 after
Corollary 6.7)

In [LW3] Lagarias and Wang proved the following theorem.

Theorem 6.1. Let A ∈ Mn(Z) be an expanding matrix such that |det(A)| = q is a
prime, and suppose that

qZn �⊆ A2(Zn). (6.1)

If D ⊆ Zn is a digit set with #D = q, then µ(T (A, D)) > 0 if and only if D is a standard
digit set.

Condition (6.1) seems to be artificial and they conjecture that the condition is redun-
dant. In the following we give a thorough investigation of the cases where |det(A)| = 3
and (6.1) is not satisfied. The conclusion of the theorem still holds.

Proposition 6.2. Let f (x) = x2 − ax ± q with a ∈ Z, q ∈ N is a prime. Let C be the
companion matrix of f (x). Then qZ2 ⊆ C2(Z2) if and only if q|a.

Proof. The companion matrix is of the form C =
[

0 1
εq a

]
where ε = ±1. For

[
k
l

]
∈ Z2,

the solution of q
[

k
l

]
= C2

[
x
y

]
is of the form

x = ε(k − q−1ay), y = ε(l − ak).

If q|a, then it is easy to see that x and y are integers so that the sufficiency follows. To

prove the necessity, we assume that q � |a, then we pick
[

k
l

]
∈ Z2 such that l − ak = 1.

The solution
[

x
y

]
/∈ Z2 and qZ2 �⊆ C2(Z2).

It follows that for |det(A)| = 3, condition (6.1) holds except for f (x) = x2 ± 3, x2 ±
3x + 3. In view of the classification in Section 3, we need to consider the corresponding
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companion matrices, and for f (x) = x2 + 3 we have to consider one more Z-similar

class
[

1 2
−2 −1

]
. First, we need a result modified from [LW3].

Proposition 6.3. Let A ∈ Mn(Z) be an expanding matrix such that |det(A)| = q is
a prime. Let D be a q-digit set such that 0 ∈ D. Then µ(T (A, D)) > 0 if and only
if for each m ∈ Z2\{0}, there exists a nonnegative integer k (depends on m) such that
{q〈A−kd, m〉: d ∈ D} is complete in Zq .

Proof. By Theorem 2.1(iii) of [LW3], µ(T (A, D)) > 0 if and only if for each m ∈
Z2\{0}, there exists a nonnegative integer k (depends on m) such that the function
ĥk(x) := (1/q)

∑
d∈D exp(2π i〈A−kd, x〉) has ĥk(m) = 0. It is equivalent to saying that

the set {exp(2π i〈A−kd, m〉): d ∈ D} consists of distinct qth roots of unity for each
m ∈ Z2\{0} (see the proof of Theorem 4.1 in [LW3]). This is, in turn, equivalent to
{q〈A−kd, m〉: d ∈ D} is complete in Zq for each m ∈ Z2\{0}.

Lemma 6.4. Let A =
[

0 1
±3 0

]
be the companion matrix of f (x) = x2 ∓ 3. Then

A2 = ±3I , and for any k ∈ N, d =
[

d1
d2

]
, m =

[
m1
m2

]
,

〈A−kd, m〉 =
{

(±3)−k ′
(d2m1 ± 3d1m2) if k = 2k ′ − 1,

(±3)−k ′
(d1m1 + d2m2) if k = 2k ′.

By Proposition 6.3 and Lemma 6.4, we have

Lemma 6.5. Let A =
[

0 1
±3 0

]
, D = {0, d, d ′} ⊆ Z2. For m ∈ Z2\{0}, we let

O(D, m) = {0, d2m1 ± 3d1m2, d ′
2m1 ± 3d ′

1m2},
E(D, m) = {0, d1m1 + d2m2, d ′

1m1 + d ′
2m2}.

Then µ(T (A, D)) > 0 if and only if for each m ∈ Z2\{0}, there exists a nonnegative
integer k such that 3−kO(D, m) or 3−kE(D, m) is complete in Z3.

For D = {0, d, d ′} =
{

0,
[

d1
d2

]
,
[

d ′
1

d ′
2

]}
, we let D1 = {0, d1, d ′

1}, D2 = {0, d2, d ′
2} and

let k = min{k1, k2} where k1 and k2 are the largest powers of the factor 3 for the sets D1

and D2, respectively.

Theorem 6.6. Let A =
[

0 1
±3 0

]
and let D be the digit set as above. Then µ(T (A, D))

> 0 if and only if either one of the following holds:

(i) k = k1 < k2 and 3−k D1 is complete in Z3,
(ii) k = k2 ≤ k1 and 3−k D2 is complete in Z3.

Proof. Without loss of generality, we assume that k = 0. For µ(T (A, D)) > 0, we

let m =
[

1
0

]
, then by Lemma 6.5, for some k, either 3−k D1 or 3−k D2 is complete in
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Z3. For case (i) with 0 = k1 < k2, if D1 is not complete in Z3, we consider m =
[

3
1

]
,

then

O(D, m) = 3{0, d2 ± d1, d ′
2 ± d ′

1},
E(D, m) = 3{0, d1 + d̄2, d ′

1 + d̄ ′
2},

where d̄2 = 1
3 d2, d̄ ′

2 = 1
3 d ′

2 are integers. It is easy to see that

3−1O(D, m) ≡ {0, ±d1, ±d ′
1} (mod 3),

3−1E(D, m)

{
≡ {0, d1, d ′

1} (mod 3) if k2 > 1,

= {0, d1 + d̄2, d ′
1 + d̄ ′

2} if k2 = 1.

In all cases they are not complete in Z3 (for the case k2 = 1, we use {0, d̄2, d̄ ′
2} is

complete in Z3), hence a contradiction and (i) follows.

In case (ii) if 0 = k2 ≤ k1, and if D2 is not complete in Z3, then we consider m =
[

1
1

]
,

we see that

O(D, m) = {0, d2 ± 3d1, d ′
2 ± 3d ′

1},
E(D, m) = {0, d1 + d2, d ′

1 + d ′
2}.

The same argument shows that neither set is complete in Z3. This a contradiction.
To prove the sufficiency, we write m1 = 3s1(u1 + 3r1), m2 = 3s2(u2 + 3r2) and

assume without loss of generality that s1 = 0 or s2 = 0. If m1 = 0 (m2 = 0), we assume
that s1 �= 0 (s2 �= 0). Now for case (i) if s1 = 0, we see that E(D, m) is complete in
Z3; if s1 �= 0 and s2 = 0, then the same conclusion holds for 3−1O(D, m). In case (ii)
O(D, m) or E(D, m) are complete in Z3 according to the two cases s1 = 0 or s1 �= 0,
s2 = 0.

Corollary 6.7. Let A and D be as in Theorem 6.6. Then µ(T (A, D)) > 0 if and only
if D is a standard digit set.

Proof. We assume that k = 0 in the above theorem. We will show that either (i) or (ii)

implies that D is standard. Observe that A(Z2) =
{[

n
3m

]
:

[
m
n

]
∈ Z2

}
and Z2/A(Z2) has

equivalence classes
{[

0
0

]
,
[

0
1

]
,
[

0
2

]}
.

In case (ii) of Theorem 6.6, D2 is complete in Z3, hence D is complete in Z2/A(Z2)

and is a standard digit set.
In case (i) of Theorem 6.6, D1 is complete. We will construct an invertible matrix B

as in the definition of the standard digit set. Observe that Ad =
[

×
3d1

]
, Ad′ =

[ ×
3d ′

1

]
. Let

B be a matrix such that the columns of it are a basis of the lattice L defined as in the
beginning of this section. Then B is of the form

B =
[

× ×
3r 3s

]
.
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Let {0, d̃, d̃ ′} = B−1 D ∈ Z2 and Ã = B−1AB ∈ Mn(Z), we claim that D̃ is complete in
Z2/ Ã(Z2), hence D is a standard digit set. We observe that d̃ ∈ Z2/ Ã(Z2) if and only if

B−1d = B−1ABz for some z =
[

z1
z2

]
∈ Z2. This implies that

[
d1

×

]
= AB

[
z1

z2

]
=

[
3(r z1 + sz2)

×

]
,

and d1 has factor 3, an impossibility since D1 is complete in Z3. We hence conclude that
d̃ /∈ Z2/ Ã(Z2). Similarly we make the same conclusion for d̃ ′ and d̃ − d̃ ′ and the claim
follows.

Remark 1. Corollary 6.7 shows that the fact that D is complete in L/A(L) does not
imply that D is complete in Z2/A(Z2).

Remark 2. In Theorem 6.6 and Corollary 6.7, A and D can be replaced by A =[
0 1

±q 0

]
, D = {0, d1, . . . , dq−1} ⊆ Z2, where q is a prime. In this case, D1 and D2

consist of first and second entries of the digits of D, respectively.

Next, we consider the Z-similar class A =
[

1 2
−2 −1

]
corresponding to the charac-

teristic polynomial f (x) = x2 + 3. By using the same observation as Lemma 6.5, we
have

Lemma 6.8. Let A =
[

1 2
−2 −1

]
, D = {0, d, d ′} ⊆ Z2. Then A2 = −3I and for

m ∈ Z2\{0}, we let

O(D, m) = {0, (m1 − 2m2)d1 + (2m1 − m2)d2, (m1 − 2m2)d
′
1 + (2m1 − m2)d

′
2},

E(D, m) = {0, m1d1 + m2d2, m1d ′
1 + m2d ′

2}.

Then µ(T (A, D)) > 0 if and only if for each m ∈ Z2\{0}, there exists a nonnegative
integer k such that 3−kO(D, m) or 3−kE(D, m) is complete in Z3.

We use the same notation as in the last theorem. For the digit set D, we let D1 =
{0, d1, d ′

1}, D2 = {0, d2, d ′
2}, and let k = min{k1, k2} where k1 and k2 are the largest

powers of the factor 3 for the sets D1 and D2, respectively.

Theorem 6.9. Let A, D = {0, d, d ′} be as above, then µ(T (A, D)) > 0 if and only if
there exists an integer k ≥ 0 such that one of the following (nonexclusive) cases holds:

(i) k = k1 < k2 and 3−k D1 is complete in Z3,
(ii) k = k2 < k1 and 3−k D2 is complete in Z3,

(iii) k = k1 = k2 and either one of the following holds:

(a) 3−k D ≡
{[

0
0

]
,
[

0
j

]
,
[

i
j

]
: i �= j, i, j = 1, 2

}
(mod 3) or

3−k D ≡
{[

0
0

]
,
[

j
i

]
,
[

j
0

]
: i �= j, i, j = 1, 2

}
(mod 3);
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(b) 3−k D ≡
{[

0
0

]
,
[

i
0

]
,
[

0
j

]
: i = j, i, j = 1, 2

}
(mod 3);

(c) both 3−k D1 and 3−k D2 are complete in Z3.

Proof. Without loss of generality we assume that k = 0. Suppose µ(T (A, D)) > 0. If

0 = k1 < k2, we take m =
[

1
0

]
, then

O(D, m) = {0, d1 + 2d2, d ′
1 + 2d ′

2}, E(D, m) = {0, d1, d ′
1}.

It follows that O(D, m), E(D, m) are complete in Z3 if and only if one of them is. By

the above lemma, we see that (i) holds. If 0 = k2 < k1, we use m =
[

0
1

]
and consider

O(D, m) = {0, −2d1 − d2, −2d ′
1 − d ′

2}, E(D, m) = {0, d2, d ′
2},

then the same argument as above shows that (ii) holds. If 0 = k1 = k2 and only one of

D1 and D2 is complete in Z3, we consider m =
[

1
1

]
. Then one can see that

O(D, m) = {0, −d1 + d2, −d ′
1 + d ′

2}, E(D, m) = {0, d1 + d2, d ′
1 + d ′

2}

are not complete in Z3. If 0 = k1 = k2 and if none of D1 and D2 is complete in Z3, then

we use m =
[

1
0

]
and

[
0
1

]
and Lemma 6.8 to conclude that both

{0, d1 + 2d2, d ′
1 + 2d ′

2}, {0, −2d1 − d2, −2d ′
1 − d ′

2}

are complete in Z3. It is now direct to check that (iii) holds.
To prove the sufficiency, we write mi = 3si (ui + 3ri ), i = 1, 2, and assume without

loss of generality that s1 or s2 = 0. If mi = 0, i = 1, 2, then we also assume si is
arbitrarily large.

For case (i), if s1 = 0, then E(D, m) is complete; if s1 �= 0, s2 = 0, then O(D, m) ≡
{0, −2u2d1, −2u2d ′

1} ≡ {0, d1, d ′
1} (mod 3) and is complete in Z3 by assumption.

For case (ii), the same technique will work.
For case (iii)(a), we give a proof for d1 ≡ 0 (mod 3) since the other cases can be

handled similarly. If 0 = s2 < s1, then O(D, m) ≡ {0, u22 j, u2(i + 2 j)} is complete
in Z3; if 0 = s1 < s2, then O(D, m) = {0, 2u1 j, u1(i + 2 j)} is complete in Z3; if
0 = s1 = s2, for u1 = u2 = u, then O ≡ {0, uj, u(−i + j)} is complete in Z3 , and for
u1 �= u2, u1, u2 = 1, 2, then E ≡ {0, u2 j, u1i + u2 j} is complete in Z3.

For case (iii)(b), if 0 = s1 < s2, then O(D, m) ≡ {0, u1i, 2u1 j} is complete in Z3;
if 0 = s2 < s1, then O(D, m) ≡ {0, −2u2i, −u2 j} is complete in Z3; if 0 = s2 = s1,
then for u = u1 = u2, O(D, m) ≡ {0, −ui, u j} is complete in Z3, and for u1 �= u2,
E(D, m) ≡ {0, u1i, u2 j} is complete in Z3.

For case (iii)(c), if 0 = s1 < s2 or 0 = s2 < s1, then E(D, m) is complete in
Z3. Suppose that 0 = s2 = s1. We let (0, d1, d2) = (0, i, j), (0, d ′

1, d ′
2) = (0, i ′, j ′),
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i, j, i ′, j ′ = 1, 2. For u1 = u2, we can check that if i �= j , then O(D, m) is complete in
Z3; if i = j , then E(D, m) is complete in Z3. For u1 �= u2, E(D, m) or 3−1E(D, m) is
complete in Z3.

Corollary 6.10. Let A and D be as in Theorem 6.9. Then µ(T (A, D)) > 0 if and only
if D is a standard digit set.

Proof. By a direct calculation it is easy to see that
[

x
y

]
∈ AZ2 if and only if 3|(x − y).

Using this observation, it follows that except for one case (assuming that k = 0) the digit
sets D in Theorem 6.9 are complete in Z2/A(Z2). The exceptional case is

d =
[

1 + 3r1

1 + 3r2

]
, d ′ =

[
2 + 3r ′

1

2 + 3r ′
2

]

(assuming the 3k factor is 1). Note that

Ad =
[

3 + 3(r1 + 2r2)

−(3 + 3(2r1 + r2))

]
, Ad′ =

[
6 + 3(r ′

1 + 2r ′
2)

−(6 + 3(2r ′
1 + r ′

2))

]
.

Let B = [b, b′] be a basis for the lattice Z[A, D]. Then b = α1d +α2d ′ +α3Ad+α4Ad′,
b′ = β1d + β2d ′ + β3 Ad + β4Ad′ for some αi , βi ∈ Z, i = 1, 2, 3, 4. Then

B =
[
α1 + 2α2 + 3r β1 + 2β2 + 3r ′

α1 + 2α2 + 3s β1 + 2β2 + 3s ′

]

for some r, r ′, s, s ′ ∈ Z. Let D̃ = B−1 D ∈ Z2 and Ã = B−1AB ∈ M2(Z). We claim
that D̃ is complete in Z2/ Ã(Z2) and hence D is a standard digit set. We observe that

d̃ ∈ Ã(Z2) if and only if there exists z =
[

z1
z2

]
∈ Z such that d̃ = Ãz. It follows that

d = ABz = 3

[
[(α1 + 2α2) + (r + 2s)]z1 + [(β1 + 2β2) + (r ′ + 2s ′)]z2

−[(α1 + 2α2) + (2r + s)]z1 − [(β1 + 2β2) + (2r ′ + s ′)]z2

]

which is impossible. Hence d̃ /∈ Ã(Z2). The same argument holds for d̃ ′ and d̃ − d̃ ′.

Finally, we consider the unique Z-similar class A =
[

0 1
−3 −3

]
which has characteristic

polynomial f (x) = x2 +3x +3 (we do not need to consider f (x) = x2 −3x +3 because
of the remark in Section 2). Note that

A−(6k−5) = (−1)k+13−(3k−2)

[
−3 −1

3 0

]
:= (−1)k+13−(3k−2) A1,
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A−(6k−4) = (−1)k+13−(3k−2)

[
2 1

−3 −1

]
:= (−1)k+13−(3k−2) A2,

A−(6k−3) = (−1)k+13−(3k−1)

[
−3 −2

6 3

]
:= (−1)k+13−(3k−1) A3,

A−(6k−2) = (−1)k+13−(3k−1)

[
1 1

−3 −2

]
:= (−1)k+13−(3k−1) A4,

A−(6k−1) = (−1)k+13−3k

[
0 −1

3 3

]
:= (−1)k+13−3k A5,

A−6k = (−1)k3−3k

[
1 0

0 1

]
:= (−1)k+13−3k A6.

Let {〈Ai d, m〉: d ∈ D} = Si (D, m), i = 1, . . . , 6. Then

S1(D, m) = {0, 3(m2 − m1)d1 − m1d2, 3(m2 − m1)d
′
1 − m1d ′

2},
S2(D, m) = {0, (2m1 − 3m2)d1 + (m1 − m2)d2, (2m1 − 3m2)d

′
1 + (m1 − m2)d

′
2},

S3(D, m) = {0, (6m2 − 3m1)d1 + (−2m1 + 3m2)d2, (6m2 − 3m1)d
′
1

+ (−2m1 + 3m2)d
′
2},

S4(D, m) = {0, (m1 − 3m2)d1 + (m1 − 2m2)d2, (m1 − 3m2)d
′
1 + (m1 − 2m2)d

′
2},

S5(D, m) = {0, 3m2d1 + (3m2 − m1)d2, 3m2d ′
1 + (3m2 − m1)d

′
2},

S6(D, m) = {0, m1d1 + m2d2, m1d ′
1 + m2d ′

2}.

By considering the set {3〈A−kd, m〉: d ∈ D} as in Proposition 6.3, we have the following
criterion for T (A, D) to be a tile.

Lemma 6.11. Let A be as above and let D = {0, d, d ′} ∈ Z2. Then µ(T (A, D)) > 0
if and only if for each m ∈ Z2\{0}, there exists a nonnegative integer k such that either
one of the sets 3kSi (D, m), 1 ≤ i ≤ 6, is complete in Z3.

Theorem 6.12. Let A =
[

0 1
−3 −3

]
and let D =

{[
0
0

]
,
[

d1
d2

]
,
[

d ′
1

d ′
2

]}
. Thenµ(T (A, D)) >

0 if and only if there exists k such that either one of the following holds:

(i) k = k1 < k2, then 3−k D1 is complete in Z3,
(ii) k = k2 ≤ k1: if 3−k D2 �= {0, 0, 0}, then it is complete in Z3; otherwise D1 is

complete in Z3.

Moreover either (i) or (ii) implies that D is a standard digit set with respect to A.
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Proof. Without loss of generality, we assume that k = 0. We first prove the necessity.
Suppose that µ(T (A, D)) > 0 and we want to show:

(1) Either D1 or D2 is complete in Z3.
(2) If k = k1 = k2 = 0, then if D2 �= {0, 0, 0}, it is complete in Z3, otherwise D1 is

complete in Z3

For m =
[

1
1

]
, a direct calculation yields

S1(D, m) ≡ {0, −d2, −d ′
2} (mod 3),

S2(D, m) ≡ {0, −d1, −d ′
1} (mod 3).

Lemma 6.11 implies that one of the above two sets must be complete in Z3 and (i)

follows. To prove (ii) assume that k = k1 = k2 = 0. For m =
[

2
1

]
, Lemma 6.11 implies

that one of the above sets must be complete in Z3:

S5(D, m) ≡ {0, d2, d ′
2} (mod 3), (6.2)

S2(D, m) ≡ {0, d1 + d2, d ′
1 + d ′

2} (mod 3). (6.3)

Suppose that D2 = {0, 0, 0},then by (1), D1 is complete in Z3. If D2 �= {0, 0, 0}, then
it must be complete in Z3. For otherwise, D1 must be complete in Z3. However, in this
case, none of the sets in (6.2) and (6.3) is complete in Z3, which is a contradiction. The
necessity follows from (1) and (2).

To prove the sufficiency, it is suffice to show first that the digits in (i) and (ii) are
standard. The proof is similar to the proof of Corrollary 6.7 and hence we omit it
here.

7. Self-Similarity

A transformation S: Rn → Rn is called a similitude if there is a constant α > 0 such that
|S(x) − S(y)| = α|x − y| for all x, y ∈ Rn . In this case, S is of the form Sx = Mx + b
where M is a self-similar matrix, i.e., |Mx| = α|x | for all x ∈ Rn . The following
proposition follows directly from the definition.

Proposition 7.1. M =
[

a b
c d

]
�= 0 is a a self-similar matrix if and only if c = ∓b and

d = ±a.

Corollary 7.2. If A is Z-similar to a self-similar matrix, then the trace of A is 2k,
k ∈ Z.

Remark. For A =
[

0 1
u v

]
to be Z-similar to M =

[
m n
n −m

]
, we must have v = 0. An

example is A =
[

0 1
k2 + 1 0

]
, k �= 0. Then A ∼

[
k 1
1 −k

]
using P =

[
1 0

−k 1

]
.
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Corollary 7.3. Let A =
[

0 1
u v

]
and v �= 0. Suppose A is Z-similar to a self-similar

matrix M , then u = −(k2 + 1), v = 2k for some k ∈ Z\{0}. In this case, M =
[

k 1
−1 k

]
.

Conversely, if u, v in A are given as above, then A is Z-similar to an M of the above
form.

Proof. Let P =
[

a b
c d

]
denote a unimodular matrix. We consider A = P−1MP.

v �= 0 implies that M is of the form M =
[

m n
−n m

]
. By simplifying the expression,

we have

0 = a(md + nb) + c(nd − mb),

1 = (b2 + d2)n,

u = −(a2 + c2)n,

v = −2(ab + cd)n (using the first equation).

The equations imply that n = 1, b = 0, d = ±1 or n = 1, b = ±1, d = 0. This
together with ad − bc = ±1 implies that u = −(k2 + 1), v = 2k with k �= 0.

For the converse, we take P =
[

1 0
−k 1

]
and M =

[
k 1

−1 k

]
. Then P−1MP = A.

We can use the above results to check if the expanding matrices in Sections 3–5
are Z-similar to self-similar matrices. We first note that A ∈ M2(Z) with A ∼ M =[

m n
∓n ±m

]
implies that the characteristic polynomial must have an even middle coefficient

(Corollary 7.2). By the remark after Corollary 7.2, we see that for A ∈ M2(Z) with
det A < 0 to have A ∼ M , the characteristic polynomial should be of the form x2 − q.
By the proof of Corollary 7.3, if x2 + q is the characteristic polynomial of A ∈ M2(Z)

with det A > 0, then the companion matrix C �∼ M .

|det(A)| = 2. The Z-similar classes are determined by the six companion matrices
[LW1]. By Corollary 7.2, we need to consider the expanding polynomials x2 − 2, x2 ±
2x + 2. By the remark and Corollary 7.3, the companion matrices of x2 − 2, x2 ± 2x + 2
are Z-similar to a self-similar matrix.

|det(A)| = 3. Since m2 + n2 = 3 has no integer solutions, none of such A will be
Z-similar to a self-similar matrix.

|det(A)| = 4. We observe that m2 + n2 = 4 if and only if m = 0, n = ±2 or
m = ±2, n = 0. Hence trace(A) = 0, ±4. Therefore, we need to consider the expanding

polynomials: x2 ± 4, x2 ± 4x + 4. For x2 + 4, we have M =
[

0 2
−2 0

]
and C �∼ M by

Corollary 7.3. For x2 −4, there are three Z-similar classes and two of them are Z-similar

to M =
[

2 0
0 −2

]
and

[
0 2
2 0

]
. For x2+4x +4, we have M =

[
−2 0

0 −2

]
and for x2−4x +4,

we have M =
[

2 0
0 2

]
.
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|det(A)| = 5. In this case, m2+n2 = 5 if and only if m = ±1, n = ±2 or m = ±2, n =
±1. Therefore, we need to consider the expanding polynomials: x2 ± 5, x2 ± 2x + 5,
x2±4x+5. For x2+5, x2±2x+5, C �∼ M by Corollary 7.3 since v �= 2k with nonzero k.

In fact, for the characteristic polynomial x2 + 5, A ∼ M =
[

m n
−n m

]
implies that m = 0

since the trace is zero, which is impossible. Thus, no A with characteristic polynomial

x2 + 5 is Z-similar to a self-similar matrix. For x2 + 2x + 5, C �∼ M =
[

−1 2
−2 −1

]
and

for x2 − 2x + 5, C �∼ M =
[

1 2
−2 1

]
by Table 4. For x2 − 5, C ∼

[
2 1
1 −2

]
by the remark.

The other self-similar matrix for x2 − 5 is
[

1 2
2 −1

]
�∼ C by Table 4. For x2 + 4x + 5,

there is only one Z-similar class and we have C ∼
[

−2 1
−1 −2

]
. Similarly, for x2 − 4x + 5,

we have C ∼
[

2 1
−1 2

]
.
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Appendix

In Table 2 we list the characteristic polynomials for the 2×2 expanding integer matrices
A with |det(A)| = 2, 3, 4, 5 (Proposition 2.6). Table 3 involves such c.p. that have more
than one Z-similar class besides the companion matrices.

Finally, using the results in Section 7, we list those characteristic polynomials in
Table 4 that have self-similar representatives.

Table 2. Characteristic polynomials.

|det(A)| = 2 |det(A)| = 3 |det(A)| = 4 |det(A)| = 5

x2 ± 2 x2 ± 3 x2 ± 4 x2 ± 5

x2 ± x + 2 x2 ± x − 3 x2 ± x − 4 x2 ± x − 5

x2 ± 2x + 2 x2 ± x + 3 x2 ± 2x − 4 x2 ± 2x − 5

x2 ± 2x + 3 x2 ± x + 4 x2 ± 3x − 5

x2 ± 3x + 3 x2 ± 2x + 4 x2 ± x + 5

x2 ± 3x + 4 x2 ± 2x + 5

x2 ± 4x + 4 x2 ± 3x + 5

x2 ± 4x + 5

x2 ± 5x + 5
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Table 3. Representatives of the nonunique Z-similar classes.

Characteristic Number of Representatives of
polynomials of A similarity classes classes besides C

x2 + 3 2
[

1 2
−2 −1

]
x2 − 2x − 4 2

[
0 2
2 2

]
x2 − 4 3

[
2 n
0 −2

]
, n = 0, 2

x2 + 2x − 4 2
[

0 2
2 −2

]
x2 − 4x + 4 ∞

[
2 |n|
0 2

]
, |n| �= 1

x2 − 2x + 4 2
[

0 2
−2 2

]
x2 − x + 4 2

[
−1 2
−3 2

]
x2 + 4 2

[
0 2

−2 0

]
x2 + x + 4 2

[
1 2

−3 −2

]
x2 + 2x + 4 2

[
0 2

−2 −2

]
x2 + 4x + 4 ∞

[
−2 |n|

0 −2

]
, |n| �= 1

x2 − 2x − 4 2
[

0 2
2 2

]
x2 − 5 2

[
1 2
2 −1

]
x2 + 2x + 5 2

[
−1 2
−2 −1

]
x2 − 2x + 5 2

[
1 2

−2 1

]
x2 + 5 2

[
2 3

−3 −2

]
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Table 4. Z-similar classes with self-similar representatives.

Characteristic Number of The classes with a
polynomials of A similarity classes self-similar representative

x2 − 2 1
[

1 1
1 −1

]
x2 − 2x + 2 1

[
1 1

−1 1

]
x2 + 2x + 2 1

[
−1 −1

1 −1

]
x2 − 4x + 4 ∞

[
2 0
0 2

]
x2 − 4 3

[
2 0
0 −2

]
,
[

0 2
2 0

]
x2 + 4 2

[
0 2

−2 0

]
x2 + 4x + 4 ∞

[
−2 0

0 −2

]
x2 − 5 2

[
1 2
2 −1

]
,
[

2 1
1 −2

]
x2 − 2x + 5 2

[
1 2

−2 1

]
x2 + 2x + 5 2

[
−1 2
−2 −1

]
x2 − 4x + 5 1

[
2 1

−1 2

]
x2 + 4x + 5 1

[
−2 1
−1 −2

]
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