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ON THE ABSOLUTE CONTINUITY
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(Communicated by David Preiss)

Abstract. Let X be a compact connected subset of Rd, let Sj , j = 1, ...,N , be

contractive self-conformal maps on a neighborhood of X, and let {pj(x)}Nj=1

be a family of positive continuous functions on X. We consider the probability
measure µ that satisfies the eigen-equation

λµ =
N∑
j=1

pj(·)µ ◦ S−1
j ,

for some λ > 0. We prove that if the attractor K is an s-set and µ is abso-
lutely continuous with respect to Hs|K , the Hausdorff s-dimensional measure
restricted on the attractor K, then Hs|K is absolutely continuous with respect
to µ (i.e., they are equivalent). A special case of the result was considered by
Mauldin and Simon (1998). In another direction, we also consider the Lp-
property of the Radon-Nikodym derivative of µ and give a condition for which
Dµ is unbounded.

1. Introduction

Let X be a compact connected subset of Rd and let Sj : X → X, j = 1, ..., N , be
contractive maps. We call {Sj}Nj=1 an iterated function system (IFS) on X . It is
well known that there exists a unique non-empty compact subset K ⊂ X invariant
under {Sj}Nj=1 in the sense that K =

⋃N
j=1Sj(K). If we associate with probability

weights {pi}Ni=1 to the IFS, then there is a unique probability measure µ on X with
suppµ = K satisfying

µ(A) =
N∑
j=1

pjµ ◦ S−1
j (A)(1.1)

for every Borel set A ⊂ X . As is well known the invariant measure is either contin-
uously singular or absolutely continuous with respect to the Lebesgue measure m
on Rd. It is easy to see that if Si(K) ∩ Sj(K) = ∅, i 6= j, then µ must be singular.
However, it remains to be a challenging question to determine which is the case
if the Si(K)’s have nonempty intersection ([LNR], [PSS]). One of the most basic
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examples of such measures is the classical Bernoulli convolution defined by

µρ =
1
2

(µρ ◦ S−1
1 + µρ ◦ S−1

2 ),

where S1(x) = ρx and S2(x) = ρx + (1 − ρ) and ρ ∈ (0, 1). It is known that µρ is
purely singular for ρ ∈ (0, 1/2) and µρ is absolutely continuous with respect to the
Lebesgue measure for m-a.e. ρ ∈ (1/2, 1) (see [PSS] and the references therein). In
[MS] Mauldin and Simon proved that if µρ is absolutely continuous with respect
to m, then m is also absolutely continuous with respect to µρ, i.e., µρ and m are
equivalent. In this paper we will show, among the other results, that the equivalence
is actually valid in a more general setting.

Let {pj(·)}Nj=1 be a family of positive continuous functions on X associated with
a contractive IFS {Sj}Nj=1. We consider the probability measure µ that satisfies the
eigen-equation

λµ =
N∑
j=1

pj(·)µ ◦ S−1
j(1.2)

for some λ > 0. (The notation means λµ(A) =
∑N

j=1

∫
A pj(x)dµ ◦S−1

j (x) for every
Borel set A.) The measure is associated with the Ruelle-Perron-Frobenius operator
T : C(K)→ C(K) and its adjoint T ∗ : M(K)→M(K)

Tf(x) =
N∑
j=1

pj(Sj(x))f(Sj(x)), T ∗ν =
N∑
j=1

pj(·)ν ◦ S−1
j ,(1.3)

where C(K) is the space of continuous functions on K and M(K) is the space of
bounded regular Borel measures on K. The operator was introduced by Ruelle (in
a more restricted form) to model the Gibbs distribution in statistical mechanics,
and was adopted to study the discrete time evolution of flows on the Riemanian
manifolds [B]. There has been extensive study on the operator in dynamical system
in regard to λh = Th and λν = T ∗ν. The theory has also been used to study the
multifractal structure of measures generated by conformal IFS [MU].

Let D be an open set in Rd. We use C1 to denote the class of continuously
differentiable maps on D. A C1-map S : D → Rd is conformal if S′(x) is a similar
matrix, i.e., S′(x) is a positive scalar multiple of an orthogonal matrix. In this case
‖S′(x)‖, the operator norm of S′(x), is the square root of the maximum eigenvalue
of the product of S′(x) and its transpose and equals | detS′(x)|1/d. We say that
{Sj}Nj=1 is a self-conformal iterated function system on a compact connected set
X ⊂ Rd if each Sj extends to an injective map Sj : D → D on an open neighborhood
D ⊃ X and

sup{‖S′j(x)‖ : x ∈ D, j = 1, 2, · · · , N} < 1.

For the IFS {Sj}Nj=1, let J = (j1, · · · , jn) ∈ {1, · · · , N}n and let SJ = Sj1 ◦· · ·◦Sjn .
The conformal IFS is said to have the bounded distortion property (BDP) if there
exists a constant C > 0 such that for any index J

‖S′J(x)‖
‖S′J(y)‖ ≤ C for any x, y ∈ D.

It is easy to see that if {Sj}Nj=1 are affine maps, then it has the BDP. Moreover,
by adopting the proof in [FL, Lemma 2.3], we can show that {Sj}Nj=1 also has the
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BDP if log ‖S′j‖, j = 1, · · · , N , satisfy the Dini condition, i.e.,∫ a

0

Ω(log ‖S′j‖, t)
t

dt <∞

for some a > 0, where Ω(ψ, t) := max{|ψ(x)− ψ(y)| : |x− y| ≤ t}.
Let Hs and Hs|K be the Hausdorff s-dimensional measure on Rd and its re-

striction on the set K respectively. Recall that a set E ⊂ Rd is called an s-set if
0 < Hs(E) <∞.
Theorem 1.1. Suppose that {Sj}Nj=1 is a self-conformal iterated function system
defined on X and has the BDP. If the attractor K is an s-set and the measure µ in
(1.2) is absolutely continuous with respect to Hs|K , then in reverse, Hs|K is also
absolutely continuous with respect to µ on K.

This generalizes the results in [MS], [PSS, Proposition 3.1] and [HL, Proposition
1.2] where µ is a self-similar measure and Hs is the Lebesgue measure. It is known
that if the conformal {Sj}Nj=1 has Hölder continuous differential, and s is the unique
solution of the Bowen equation P (s) = 0, where

P (t) = lim
n→∞

1
n

log sup
x∈K

∑
|J|=n

‖S′J(x)‖t for t > 0,

then K is an s-set if and only if {Sj}Nj=1 satisfies the open set condition [PRSS].
(If each Sj is a similitude with a contraction ratio ρi, then P (s) = 0 is equivalent
to the well known formula

∑N
i=1 ρ

s
i = 1.) If s = d, then the absolute continuity of

µ with respect to Hs|K implies that K is an s-set.
For the absolutely continuous µ, we also have the following interesting results

on the equivalence of the local and global Lp-property and on a sufficient condition
for the unboundedness of the Radon Nikodym derivative Dµ. Let Bδ(x) represent
the open ball centered at x with radius δ.

Theorem 1.2. Suppose that {Sj}Nj=1 are contractive one-to-one C1-maps defined
on X and the measure µ in (1.2) is absolutely continuous with respect to the
Lebesgue measure m. If there exists x ∈ K and δ > 0 such that Dµ ∈ Lp(Bδ(x)∩K)
for some 1 ≤ p ≤ ∞, then Dµ ∈ Lp(K).

Theorem 1.3. Let {Sj}Nj=1 be contractive one-to-one C1-maps defined on X and
let pj(x) = pj, j = 1, · · · , N , be probability weights. If the invariant measure µ in
(1.1) is absolutely continuous with respect to the Lebesgue measure m and there is
at least one pj > βj, where βj = maxx∈K{| detS′j(x)|}, then Dµ is unbounded on
the attractor K.

We will prove these theorems in Section 2 and make some remarks in Section 3.

2. Proof of the theorems

Let K =
⋃N
j=1Sj(K) be the attractor of the IFS and let KJ = SJ (K), J =

(j1, · · · , jn) ∈ {1, 2, · · · , N}n. It is easy to see that for each n, K =
⋃
|J|=nKJ . We

let K = {KJ : |J | = n, n ∈ N}. Then K is a countable family of compact subsets
with the following properties:

(P1) For any δ > 0, there are only finitely many members of K whose diameters
are > δ.

(P2) For any ε > 0, x ∈ K, there exists KJ ∈ K, such that x ∈ KJ ⊂ Bε(x)∩K.
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We first show that for any open set U , K has a finite or countable disjoint
subfamily which covers U ∩K except for an Hs-zero set.

Lemma 2.1. Suppose that the IFS defined on X is self-conformal and has the
BDP. If the attractor K is an s-set, then for any open set U ⊂ Rd, there exists a
finite or countable disjoint subfamily G of K contained in U and Hs((U∩K)\G) = 0,
where G =

⋃
G.

Proof. Let KU= {A ∈ K: A ⊆ U}. Using the Vitali covering theorem [F, Theorem
1.10], we can select a finite or countable disjoint subfamily G of KU such that either∑
V ∈G(diam(V ))s = ∞ or Hs((U ∩K) \ G) = 0. In the following, we will exclude

the first case to complete the proof.
Notice that each Sj extends to an injective map on an open bounded set D which

is also connected. Let δ0 = inf{|x− y| : x ∈ X, y /∈ D}. Then the Mean Value The-
orem and the property of conformal map imply that for all J ∈

⋃∞
n=1{1, 2, · · · , N}n

and x, y ∈ X with |x− y| < δ0,

min
u∈D
‖S′J(u)‖ · |x− y| ≤ |SJ (x)− SJ(y)| ≤ max

u∈D
‖S′J(u)‖ · |x− y|.(2.1)

Using this bi-Lipschitz property we obtain(
min
u∈D
‖S′J(u)‖

)s
Hs(K) ≤ Hs(SJ (K)) ≤

(
max
u∈D
‖S′J(u)‖

)s
Hs(K).(2.2)

We will show that the second inequality in (2.1) holds even if |x − y| ≥ δ0. In
fact, since D is connected and X is bounded, we can find M balls of radius δ0
contained in D such that their union is connected and covers X . We then select
Bi = Bδ0(xi), i = 1, 2, · · · ,m, (m ≤ M) from the covering such that x ∈ B1,
y ∈ Bm, Bi ∩ Bi+1 6= ∅, i = 1, 2, · · · ,m − 1. Using the Mean Value Theorem we
obtain

|SJ(x)− SJ (y)| ≤ |SJ(x)− SJ (x1)|+
m−1∑
i=1

|SJ (xi)− SJ(xi+1)|+ |SJ (xm)− SJ(y)|

≤ 2(m+ 1)δ0 max
u∈D
‖S′J(u)‖

≤ 2(M + 1) max
u∈D
‖S′J(u)‖|x− y|.

It follows that

diam(SJ(K)) ≤ 2(M + 1) max
u∈D
‖S′J(u)‖diam(K).

Applying the BDP, (2.2) and the above inequality, we can find a constant C > 0
such that

diam(SJ(K))s ≤ CHs(SJ (K)).

This implies that∑
V ∈G

(diam(V ))s ≤ C
∑
V ∈G
Hs(V ) ≤ CHs(U ∩K) <∞.
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Proof of Theorem 1.1. Suppose otherwise there exists a Borel subset E ⊂ K such
that µ(E) = 0 but Hs|K(E) > 0. Using (1.2) we have

0 = λµ(E) =
N∑
j=1

∫
E

pj(x)dµ ◦ S−1
j (x) =

N∑
j=1

∫
S−1
j (E)

pj ◦ Sj(x)dµ(x).

Since the pj ’s are positive functions, µ(S−1
j (E)) = 0 for all j. Let

Z =
∞⋃
k=0

⋃
|J|=k

S−1
J (E ∩KJ).

It follows that µ(Z) = 0. Note that Z ⊂ K, so µ(K\Z) = µ(K). Let us denoteHs|K
by ν for short. We claim that ν(K \Z) = 0. This will imply that µ is concentrated
on a ν-zero subset of K, so ν and µ are mutually singular. It contradicts the
hypothesis that µ is absolutely continuous with respect to ν on K, and completes
the proof of the theorem.

To prove the claim we note that ν(E) > 0, hence we can apply the density
theorem to find a point x ∈ E such that for any ε > 0, there exists an open ball
Br(x) with

ν(Br(x) ∩E)
ν(Br(x))

≥ 1− ε.

Replacing the U in Lemma 2.1 by Br(x), we can find a finite or countable disjoint
subfamily G of K such that each member of G is a subset of Br(x) ∩K and

ν((Br(x) ∩K) \G) = 0,

where G =
⋃
G. Note that since G ⊂ Br(x), we have

ν(G ∩ E)
ν(G)

=
ν(Br(x) ∩G ∩ E)
ν(Br(x) ∩G)

≥ 1− ε.

Since members of G are disjoint, there exists KJ ∈ G with

ν(KJ ∩ E)
ν(KJ )

≥ 1− ε.

Observe that since S−1
J (KJ∩E) ⊂ Z, we have ν(SJZ) ≥ ν(KJ∩E) ≥ (1−ε)ν(KJ).

Since Z ⊂ K, it gives

ν(SJ (K \ Z)) = ν(KJ )− ν(SJZ) ≤ εν(KJ).

Inequality (2.2) implies that(
min
u∈D
‖S′J(u)‖

)s
ν(K \ Z) ≤ ν(SJ (K \ Z))

and

ν(KJ ) ≤ max
u∈D

(‖S′J(u)‖)s ν(K).

By the BDP it follows that ν(K \Z) ≤ εCν(K). Since ε is arbitrary, ν(K \Z) = 0
and the claim is proved.
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Proof of Theorem 1.2. Let f = Dµ. For any x ∈ K, ε > 0 and M > 0, denote

A(x, ε,M) = {t ∈ K ∩Bε(x) : f(t) > M}.
We first consider the case p = ∞. It suffices to show the claim: If f /∈ L∞(K),
then for any given M0 > 0, ε0 > 0 and x0 ∈ K, we have m(A(x0, ε0,M0)) > 0.

For this we first differentiate (1.2) with respect to the Lebesgue measure and get

λf(x) =
N∑
j=1

pj(x)| det((S−1
j )′(x))|f(S−1

j (x)).

Since Sj is contractive and one-to-one, hence | det((S−1
j )′(x))| > 1. This implies

that for every j

λf(x) ≥ pj(x)f(S−1
j (x)).(2.3)

Given any M > 0, by assumption f /∈ L∞(K), m{t ∈ K : f(t) > M} > 0. Using
the Lebesgue density theorem, there exists x∗ ∈ K such that for any ε > 0,

m(A(x∗, ε,M)) > 0.

Let x ∈ Sj(A(x∗, ε,M)). Then x = Sj(t) for some t ∈ K ∩Bε(x∗) and f(t) > M.
Note that Sj is contractive, so x ∈ K ∩ Bε(Sj(x∗)). Let 0 < αj =: minx∈K pj(x).
By (2.3) we have

f(x) ≥ λ−1pj(x)f(S−1
j (x)) ≥ λ−1αjM.

It follows that

Sj(A(x∗, ε,M)) ⊂ A(Sj(x∗), ε, λ−1αjM).

Hence

m(A(Sj(x∗), ε, λ−1αjM)) ≥ m(Sj(A(x∗, ε,M)))

=
∫
A(x∗,ε,M)

| detS′j(x) | dx

≥
(

min
x∈K
| detS′j(x) |

)
m(A(x∗, ε,M))

> 0.

By repeating this process, we can prove that for any J = j1 · · · jn ∈ {1, · · · , N}n
and for any ε > 0,

m(A(SJ (x∗), ε, λ−nαJM)) > 0,

where αJ = αj1 · · ·αjn .
Now for any fixed x0 ∈ K, ε0 > 0 and M0 > 0, let J0 ∈

⋃
k≥1{1, · · · , N}k be such

that |SJ0(x) − x0| < ε0/2 for all x ∈ K. We choose ε = ε0/2, M = λ|J0|α−1
J0
M0.

Then from the above, we have x∗ ∈ K such that

m(A(SJ0(x∗), ε0/2,M0)) > 0.

By the definition of J0, we have |SJ0(x∗)− x0| < ε0/2. It follows that

A(SJ0(x∗), ε0/2,M0) ⊂ A(x0, ε0,M0).

Thus

m(A(x0, ε0,M0)) ≥ m(A(SJ0(x∗), ε0/2,M0)) > 0.

The claim is proved.
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For the case 1 ≤ p <∞, we let C > 0 be such that pj(x) ≥ C for all x ∈ K, j =
1, · · · , N . By (2.3), λpfp(x) ≥ Cpfp(S−1

j (x)). Note that since f(x) is supported
on K, we have

∞ > λp
∫
Bδ(x)

fp(t)dt ≥ Cp
∫
Bδ(x)

fp(S−1
j (t))dt

= Cp
∫
S−1
j (Bδ(x))

fp(u) | detS′j(u) | du

≥ Cp min
t∈K
| detS′j(t) |

∫
S−1
j (Bδ(x))

fp(u)du.

Since mint∈K | detS′j(t)| > 0, we conclude that∫
S−1
j (Bδ(x))

fp(u)du <∞.

By replacing Bδ(x) with S−1
i (Bδ(x)), we can show inductively that for all J ∈

{1, · · · , N}n ∫
S−1
J (Bδ(x))

fp(t)dt <∞.

The theorem thus follows from the fact that there exists J such that SJ(K) ⊂ Bδ(x),
and hence K ⊂ S−1

J (Bδ(x)).

Proof of Theorem 1.3. Let f = Dµ. It suffices to show that m{x ∈ K : f(x) >
M} > 0 for any fixed M > 0.

For any J = (j1, · · · , jn), let pJ = pj1 · · · pjn . By using (1.1) repeatedly, we have
for any n ∈ N

µ(A) =
N∑
j=1

N∑
i=1

pipjµ ◦ S−1
i ◦ S−1

j (A)

=
∑
|J|=n

pJµ ◦ S−1
J (A).

It follows that for any fixed J = (j1, · · · , jn),

pJ = pj1 · · · pjn ≤ µ(KJ).(2.4)

Let j be the index such that pj > βj as in the hypothesis. Then for any M > 0,
there exists n0 such that for all n ≥ n0,

M m(K)βnj < pnj .

Let J∗ = (j, j, · · · , j) have length n ≥ n0; then

m(KJ∗) =
∫
K

| detS′J∗(x)|dx ≤ βnj m(K).
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On the other hand, we have

µ(KJ∗) =
∫
KJ∗

f(x)dx

=
∫
KJ∗∩{f(x)>M}

f(x)dx +
∫
KJ∗∩{f(x)≤M}

f(x)dx

≤
∫
KJ∗∩{f(x)>M}

f(x)dx +M ·m(KJ∗)

<

∫
KJ∗∩{f(x)>M}

f(x)dx + pnj .

By (2.4) we have ∫
KJ∗∩{f(x)>M}

f(x)dx > µ(KJ∗)− pnj ≥ 0,

so that m{x ∈ KJ∗ : f(x) > M} > 0. This proves the theorem.

3. Some remarks

Let µ be the Bernoulli convolution defined by µ = pµ ◦ S−1
1 + (1 − p)µ ◦ S−1

2 ,
where S1x = ρx, S2x = ρx + (1 − ρ). In [PS] Peres and Solomyak proved that if
p ∈ [ 1

3 ,
2
3 ], then µ is absolutely continuous for almost all ρ ∈ [pp(1− p)1−p, 1). Note

that (1
3 )1/3(2

3 )2/3 = 22/3

3 ≈ 0.5291 < 2
3 . If we take 22/3

3 ≤ ρ < p = 2
3 , we see from

Theorem 1.3 that there are invariant measures with unbounded density. We also
note that there are ρ ∈ [ 22/3

3 , 2
3 ] such that ρ−1 is a P.V. number, for such ρ the

invariant measure will be purely singular for any weight [LNR].
Theorem 1.2 implies that the µ in (1.2) has a self-similar property that if Dµ is

unbounded on K, then it is unbounded in Bδ(x) for every x ∈ suppµ and for every
δ > 0. It is clear that the Lp-property in the theorem cannot be replaced by the
Ck-property, namely, the fact that Dµ is Ck-differentiable on a ball does not imply
that it is Ck-differentiable on K. For example, let Sj(x) = x/2 + j, j = 0, 1, 2, with
weights p0 = p2 = 1/4 and p1 = 1/2. Then Dµ is a tent function on [0,4], which
has continuous derivatives of all order in (0, 4) \ {2}, but it is not differentiable at
2.

In regard to the question of the eigen-measure in (1.2) being of pure type, we see
that if µ is the unique measure satisfying (1.2), then it is either discrete or singularly
continuous or absolutely continuous. This can easily be proved by writing µ as the
three components and show that each component satisfies (1.2) and then applying
the uniqueness of the eigen-measure to make the conclusion. Nevertheless the
measure of (1.2) may not be unique if pi(x) is merely assumed to be continuous
[Q], and stronger continuity assumption has to be added [FL]. Therefore we do not
have a complete answer for the pure type.
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