CORRIGENDUM

Volume 231, Number 2 (1999), in the article "Iterated Function System and Ruelle Operator," by Ai Hua Fan and Ka-Sing Lau, pages 319-344 (doi:10.1006/jmaa.1998.6210):

1. INTRODUCTION

We adopt the same notation as in [FL]. Let $\left\{w_{j}\right\}_{j=1}^{N}$ be a finite family of contractive, one-to-one self-conformal maps on an open set $V \subseteq \mathbb{R}^{d}$ with

$$
\begin{equation*}
0<\inf _{x, j}\left|w_{j}^{\prime}(x)\right| \leq \sup _{x, j}\left|w_{j}^{\prime}(x)\right|<1 \tag{1.1}
\end{equation*}
$$

and all the $\left|w_{j}^{\prime}\right|$ satisfying the Dini condition. Let K be the invariant set under $\left\{w_{j}\right\}_{j=1}^{N}$; i.e., $K=\cup_{j=1}^{N} w_{j}(K)$. We say that $\left\{w_{j}\right\}_{j=1}^{N}$ satisfies the open set condition (OSC) if there exists a bounded open set $U \subseteq V$ such that

$$
w_{j}(U) \subseteq U \quad \text { and } \quad w_{i}(U) \cap w_{j}(U)=\varnothing \quad \text { for } i \neq j,
$$

and the strong open set condition (SOSC) if in addition, the above bounded open set U can be chosen so that $U \cap K \neq \varnothing$. The SOSC has technical importance [FL]. Schief [S] proved, among the other results, that the OSC implies the SOSC for self-similar maps. In [FL, Lemma 2.6] we claimed the result for the self-conformal maps. However, it was pointed out by Peres et al $[\mathrm{P}]$ (and also by Patzschke and Öberg) that there is a gap in the proof and they also provided a new proof. Their proof involves a delicate extension of Schief's method and seems to be quite complicated. Here we give a much simpler argument to close up the gap (Theorem 3.3). It involves some strategic change of Schief's construction. We include some details here so that it can be read independently.

[^0]
2. THE CONSTRUCTION

We let \mathcal{F} denote the set of finite indices $J=j_{1} \cdots j_{n}, 1 \leq j_{i} \leq N$, and let

$$
w_{J}=w_{j_{1}} \circ \cdots \circ w_{j_{n}}, \quad K_{J}=w_{J}(K), \quad r_{J}=\operatorname{diam} K_{J} .
$$

For convenience we assume that V is connected so that we can use the mean value theorem freely in Lemma 2.1. The condition is not essential and can be omitted, as is proved in [Y]. We have
Lemma 2.1. For the IFS $\left\{w_{j}\right\}_{j=1}^{N}$,
(i) there exists $c_{1}>0$ such that for any $x, y \in V, J \in \mathcal{F}$,

$$
\begin{equation*}
c_{1}^{-1} r_{J} \leq \frac{\left|w_{J}(x)-w_{J}(y)\right|}{|x-y|} \leq c_{1} r_{J} ; \tag{2.1}
\end{equation*}
$$

(ii) there exists $c_{2}>1$ such that for any $I, J \in \mathcal{F}$,

$$
\begin{equation*}
c_{2}^{-1} r_{I} r_{J} \leq r_{I J} \leq c_{2} r_{I} r_{J} . \tag{2.2}
\end{equation*}
$$

Proof. See [FL, Lemma 2.3 and (2.4)] for an elementary proof. Note that in [FL], the notation r_{J} is $\left|w_{J}^{\prime}\left(x_{0}\right)\right|$ for some fixed x_{0} in V; it differs from the r_{J} here by a universal constant.
For any fixed $\varepsilon>0$ and for any set $A \subseteq \mathbb{R}^{d}$, we let $B(A, \varepsilon)=\{y \in V$: $d(x, y)<\varepsilon$ for some $x \in A\} ; B(x, \varepsilon)$ is the ε-ball in V center at x. Let

$$
G_{J}=w_{J}(B(K, \varepsilon))
$$

By Lemma 2.1(i), we have, for any $x \in V$,

$$
\begin{equation*}
B\left(w_{J}(x), c_{1}^{-1} \varepsilon r_{J}\right) \subseteq w_{J}(B(x, \varepsilon)) \subseteq B\left(w_{J}(x), c_{1} \varepsilon r_{J}\right) \tag{2.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
B\left(K_{J}, c_{1}^{-1} \varepsilon r_{J}\right) \subseteq G_{J} \subseteq B\left(K_{J}, c_{1} \varepsilon r_{J}\right) \tag{2.4}
\end{equation*}
$$

For $0<b<1$, we let

$$
\Lambda_{b}=\left\{J=j_{1} \cdots j_{n}: \quad r_{j_{1} \cdots j_{n}}<b \leq r_{j_{1} \cdots j_{n-1}}\right\} .
$$

Our most crucial difference from [S, P] is the following inductive way of defining the index set $\Lambda(J), J \in \mathscr{F}$: For $J=j$, we define

$$
\Lambda(J)=\left\{I \in \Lambda_{\text {diam }_{J}}: K_{I} \cap G_{J} \neq \varnothing\right\} .
$$

Suppose $\Lambda(J)$ is defined; we define

$$
\Lambda(j J)=\mathscr{A} \cup \mathscr{B},
$$

where

$$
\mathscr{A}=\{j I: I \in \Lambda(J)\}
$$

and

$$
\mathscr{B}=\left\{I \in \Lambda_{\mathrm{diamG}}^{\mathrm{jj}} \mathfrak{}: i_{1} \neq j \text { and } K_{I} \cap G_{j J} \neq \varnothing\right\} .
$$

(Note that in $[\mathrm{S}], \Lambda(J)$ is defined as $\left\{I \in \Lambda_{\text {diamG }_{\mathrm{J}}}: K_{I} \cap G_{J} \neq \varnothing\right\}$; the two definitions do not contain each other.) It is easy to see from the construction that for $I \in \Lambda(J)$ of either type \mathscr{A} or $\mathscr{B}, K_{I} \cap G_{J} \neq \varnothing$; also K_{I} and K_{J} are comparable in size (Lemma 3.1).

For fixed $J_{0} \in \mathscr{F}$, the construction of the set \mathscr{A} implies trivially that

$$
\Lambda\left(j J_{0}\right) \supseteq\left\{j I: I \in \Lambda\left(J_{0}\right)\right\}, \quad j=1, \cdots, N .
$$

Our aim is to find J_{0} such that the equality holds (Lemma 3.2). In this case the set \mathscr{B} is empty.

3. THE PROOFS

Lemma 3.1. There exists $c>0$ such that $c^{-1} \leq \frac{r_{I}}{r_{I}} \leq c$ for all $I \in$ $\Lambda(J), J \in \mathcal{F}$.

Proof. For $I \in \Lambda(J), J \in \mathcal{F}$, we consider the two cases:
(i) If $i_{1} \neq j_{1}$, then by the construction in \mathscr{B}, we see that $I \in \Lambda_{\text {diamG }_{J}}$ and by Lemma 2.1(i),

$$
r_{J} \leq \operatorname{diam} G_{J} \leq r_{i_{1} \cdots i_{n-1}} \leq \frac{c_{1}}{r_{\min }} r_{I},
$$

where $r_{\text {min }}=\inf _{j}\left\{\operatorname{diam} K_{j}\right\}$. Also by (2.1) and (2.4) we have

$$
r_{J} \geq\left(1+2 c_{1} \varepsilon\right)^{-1} \text { diam } G_{J} \geq\left(1+2 c_{1} \varepsilon\right)^{-1} r_{I}
$$

Hence there exists $a>0$ such that

$$
\begin{equation*}
a^{-1} \leq \frac{r_{J}}{r_{I}} \leq a . \tag{3.1}
\end{equation*}
$$

(ii) If $i_{1}=j_{1}$, we write

$$
J=j_{1} \cdots j_{l} j_{l+1} \cdots j_{n}:=j_{1} \cdots j_{l} J^{\prime}, \quad I=j_{1} \cdots j_{l} i_{l+1} \cdots i_{m}:=j_{1} \cdots j_{l} I^{\prime},
$$

where $j_{l+1} \neq i_{l+1}$. Then by the construction of \mathscr{A}, we see inductively that $I^{\prime} \in \Lambda\left(J^{\prime}\right)$ and by (3.1), $a^{-1} \leq r_{J^{\prime}} / r_{I^{\prime}} \leq a$. This and (2.2) imply that

$$
\left(a c_{2}^{2}\right)^{-1} \leq \frac{r_{J}}{r_{I}} \leq a c_{2}^{2}
$$

If we let $c=a c_{2}^{2}$, then the lemma follows from the conclusion of the two cases.

Lemma 3.2. If in addition $\left\{w_{j}\right\}_{j=1}^{N}$ satisfies the $O S C$, then $\gamma=\sup _{J \in \mathcal{F}}$ $\# \Lambda(J)<\infty$. If we let $J_{0} \in \mathscr{F}$ such that $\# \Lambda\left(J_{0}\right)=\gamma$, then

$$
\begin{equation*}
\Lambda\left(I J_{0}\right)=\left\{I J: J \in \Lambda\left(J_{0}\right)\right\} \quad \text { for all } I \in \mathscr{F} . \tag{3.2}
\end{equation*}
$$

Proof. Let U be a bounded open set in the definition of the OSC; then $K \subset \bar{U}$. We claim that there exists $\alpha>0$ such that for any $x \in K_{J}$,

$$
\begin{equation*}
w_{I}(U) \subseteq B\left(x, \alpha r_{J}\right) \quad \text { for all } I \in \Lambda(J) \tag{3.3}
\end{equation*}
$$

Indeed from the construction of $I \in \Lambda(J)$ in \mathscr{A} and \mathscr{B}, we have $w_{I}(K) \cap$ $G_{J} \neq \varnothing$. Since $w_{I}(\bar{U}) \supseteq w_{I}(K)$, we see that $w_{I}(\bar{U}) \cap G_{J} \neq \varnothing$. Also by (2.1), there exists $c_{3}>0$ such that

$$
r_{I} \leq \operatorname{diam} w_{I}(\bar{U}) \leq c_{3} r_{I}
$$

By (2.4) we have

$$
G_{J} \subseteq B\left(x,\left(1+c_{1} \varepsilon\right) r_{J}\right) .
$$

From these we have $w_{I}(\bar{U}) \subseteq B\left(x, \alpha r_{J}\right)$ for $\alpha=1+c_{1} \varepsilon+c_{3}$.
Now we observe that $w_{I}(U), I \in \Lambda(J)$ are disjoint and each contains a ball of radius larger than $a r_{J}$ for some constant $a>0$ (by (2.1)). Thus by using (3.3) and a simple volume argument, we conclude that the number of $I \in \Lambda(J)$ is bounded; i.e., $\gamma=\sup _{J \in \Phi} \Lambda(J)<\infty$.

For (3.2), we have remarked after the definition of $\Lambda(J)$ that \supseteq is trivial. On the other hand, the choice of J_{0} implies that $\#\left\{I J: J \in \Lambda\left(J_{0}\right)\right\}=\gamma$. Thus the maximality of γ implies that $\Lambda\left(I J_{0}\right)=\gamma$ also and (3.2) follows.

Theorem 3.3. Suppose $\left\{w_{j}\right\}_{j=1}^{N}$ is a family of contractive, one-to-one selfconformal maps with $\left\{\left|w_{j}^{\prime}\right|\right\}_{j=1}^{N}$ satisfying (1.1) and the Dini condition. Then the OSC implies the SOSC.

Proof. The proof needs only a small modification of [S]; we put it down for completeness. Let $J_{0} \in \mathscr{F}$ be chosen as in Lemma 3.2. For any fixed $1 \leq l \leq N$ and $J \in \mathscr{F}$ with $j_{1} \neq l$, we consider the family

$$
\mathscr{L}=\left\{K_{L}: L \in \Lambda_{\text {diamG }_{\mathrm{J}_{0}}} \text { with } l_{1}=l\right\},
$$

where l_{1} is the first index of the multiple indices of L. Then \mathscr{L} is a cover of K_{l}. Since $j_{1} \neq l$, (3.2) implies that $L \notin \Lambda\left(J J_{0}\right)$; hence $K_{L} \cap G_{J J_{0}}=\varnothing$. If we let $D(A, B)=\inf \{|x-y|: x \in A, y \in B\}$, then by $(2.4), D\left(K_{L}, K_{J J_{0}}\right) \geq$ $c_{1}^{-1} \varepsilon r_{J J_{0}}$, which implies

$$
\begin{equation*}
D\left(K_{l}, K_{J J_{0}}\right) \geq c_{1}^{-1} \varepsilon r_{J_{0}} \quad \text { for } l \neq j_{1} . \tag{3.4}
\end{equation*}
$$

Now let $G_{J}^{*}=w_{J}\left(B\left(K, \varepsilon / 2 c_{1}^{2}\right)\right)$ and let

$$
U^{*}=\bigcup_{J \in \mathcal{F}} G_{J J_{0}}^{*} .
$$

Then U^{*} is a bounded open set, $U^{*} \cap K \neq \varnothing$, and

$$
w_{j}\left(U^{*}\right)=\bigcup_{J \in \mathscr{F}} w_{j}\left(G_{J J_{0}}^{*}\right)=\bigcup_{J \in \mathscr{F}} G_{j J_{0}}^{*} \subseteq U^{*}
$$

For $i \neq j$, we claim that $w_{i}\left(U^{*}\right) \cap w_{j}\left(U^{*}\right)=\varnothing$. Otherwise, there are I, J such that $G_{i I J_{0}}^{*} \cap G_{j J J_{0}}^{*} \neq \varnothing$. We assume $r_{i I J_{0}} \geq r_{j J_{0}}$. Let y be in the intersection; then there exist $y_{1} \in K_{i I J_{0}}$ and $y_{2} \in K_{j J J_{0}}$ such that

$$
d\left(y, y_{1}\right) \leq c_{1} \cdot \frac{1}{2 c_{1}^{2}} \varepsilon \cdot r_{i J_{0}} \leq \frac{\varepsilon}{2 c_{1}} r_{i J_{0}}
$$

and

$$
d\left(y, y_{2}\right) \leq c_{1} \cdot \frac{1}{2 c_{1}^{2}} \varepsilon \cdot r_{j J_{0}} \leq \frac{\varepsilon}{2 c_{1}} r_{i J J_{0}} .
$$

Hence

$$
D\left(K_{i I J_{0}}, K_{j}\right)<c_{1}^{-1} \varepsilon r_{i J_{0}},
$$

which contradicts (3.4) and the proof is complete.
We remark that we can actually prove as in [S] that the OSC is equivalent to $0<\mathscr{H}^{\alpha}(K)<\infty$ for a Hausdorff measure \mathscr{H}^{α}. The approach is the same as in $[\mathrm{S}]$, modified with this new definition of $\Lambda(J)$ and using the Ruelle operator for the appropriate α [FL].

ACKNOWLEDGMENTS

The first author thanks Dr. N. Patzschke for pointing out earlier a gap in [FL] and Professor Y. Peres for making his print available. He also thanks A. Öberg for some valuable discussion of this while he was visiting the Department of Mathematics, CUHK.

REFERENCES

[FL] A. H. Fan and K. S. Lau, Iterated Function System and Ruelle Operator, J. Math. Anal. Appl. 231 (1999), 319-344.
[P] Y. Peres, M. Rams, K. Simon, and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, preprint.
[S] A. Schief, Separation properties of self-similar measures, Proc. Amer. Math. Soc. 112 (1994), 111-115.
[Y] Y.L. Ye, "Ruelle Operator with Weakly Contractive Maps," CUHK Ph.D. thesis, 2000.

Ka-Sing Lau
Department of Mathematics
The Chinese University of Hong Kong
Shatin, Hong Kong
E-mail: kslau@math.cuhk.edu.hk
Hui Rao
Department of Mathematics
Wuhan University
Wuhan, People's Republic of China
E-mail: raohui@nlsc.whu.edu.cn
Yuan-Ling Ye
Department of Mathematics
The Chinese University of Hong Kong, Shatin, Hong Kong
E-mail: ylye@math.cuhk.edu.hk

[^0]: The research is partially supported by an HK RGC grant, a direct grant from CUHK, and the Zheng Ge Ru Foundation.

