Multifractal Structure of Convolution of the Cantor Measure

Tian-You Hu ${ }^{1}$
Department of Mathematics, University of Wisconsin, Green Bay, Wisconsin 54311; and Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong, China
E-mail address: hut@uwgb.edu and
Ka-Sing Lau ${ }^{2}$
Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China
E-mail address: kslau@math.cuhk.edu.hk

Received May 15, 1998; accepted July 23, 1998; published online May 17, 2001

The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the m-time convolution of the standard Cantor measure μ. By using some combinatoric techniques, we show that the set E of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set E is an interval. The result implies that the multifractal formalism fails without the open set condition. © 2001 Academic Press

Key Words: Cantor measure; convolution; local dimension; multifractal; multiple representation; probability.

[^0]
1. INTRODUCTION

Let μ be a probability measure on \mathbb{R}. For $s \in \operatorname{supp} \mu$, we define the local dimension $\alpha(s)$ of μ at s by

$$
\begin{equation*}
\alpha(s)=\lim _{h \rightarrow 0^{+}} \frac{\log \mu\left(B_{h}(s)\right)}{\log h}, \tag{1.1}
\end{equation*}
$$

and let $\bar{\alpha}(s)$ and $\underline{\alpha}(s)$ denote the upper and lower dimension by taking the upper and lower limits. An important consideration in fractal geometry is the multifractal structure of a measure μ generated by an iterated function system (IFS), such as the local dimension spectrum $f(\alpha)=\operatorname{dim}_{H} K_{\alpha}$ where $K_{\alpha}=\{s \in \operatorname{supp} \mu: \alpha(s)=\alpha\}$ and the global L^{q}-scaling spectrum $\tau(q)$. These two classes of spectra are formally governed by the "multifractal formalism" and there is a large amount of literature intended to justify this relationship rigorously (see, for example, $[2,3,6]$ and the references therein). The situation is well understood when the IFS satisfies the open set condition, but without that condition very little is known.

Let ν be the standard Cantor measure; then ν can be considered to be generated by the two maps $S_{i}(x)=\frac{1}{3} x+\frac{2}{3} i, i=0,1$ with weight $\frac{1}{2}$ on each S_{i}. Its m th convolution $\mu=\nu * \cdots * \nu$ is generated by

$$
S_{i}(x)=\frac{1}{3} x+\frac{2}{3} i \quad \text { with weights } 2^{-m}\binom{m}{i}, \quad i=0,1, \ldots, m .
$$

It is well known that ν has only one local dimension, namely, $\log 2 / \log 3$. For $\mu=\nu * \nu$, the IFS $\left\{S_{i}\right\}_{i=0}^{2}$ satisfies the open set condition; there is an explicit formula for the L^{q}-scaling spectrum $\tau(q)$ and the local dimension spectrum $f(\alpha)$ can be obtained by the multifractal formalism ($f(\alpha)$ equals the Legendre transformation (concave conjugate) of $\tau(q)$). For the m-time convolution the IFS $\left\{S_{i}\right\}_{i=0}^{m}$ does not satisfy the open set condition. In [4], Fan, Lau, and Ngai had made an initial investigation on the multifractal structure of such measure. They provided an algorithm to calculate the L^{q}-scaling spectrum $\tau(q)$ for q positive integers. By using the multifractal formalism, they obtained some approximation of $f(\alpha)$ for the α corresponding to $\tau^{\prime}(q), q>0$. However, nothing is known for the rest of the $f(\alpha)$.
Let $E=\{\alpha: \alpha(s)=\alpha$ for some $s \in \operatorname{supp} \mu\}$ be the set of attainable local dimensions. In this paper we show that

Theorem 1.1. Let μ be the mth convolution of the Cantor measure $(m \geq 3)$. Then $\bar{\alpha}=\sup \{\bar{\alpha}(s): s \in \operatorname{supp} \mu\}=\frac{m \log 2}{\log 3}$ is an isolated point of E.

For the case $m=3$ we have a more precise result.
Theorem 1.2. Let μ be the three-time convolution of the Cantor measure. Then
(i) $\underline{\alpha}=\inf \{\underline{\alpha}(s): s \in \operatorname{supp} \mu\}=\frac{3 \log 2}{\log 3}-1 \approx 0.89278 ; \bar{\alpha}=$ $\sup \{\bar{\alpha}(s): s \in \operatorname{supp} \mu\}=\frac{3 \log 2}{\log 3} \approx 1.89278$.
(ii) $E=[\underline{\alpha}, \tilde{\alpha}] \cup\{\bar{\alpha}\}$ with $\tilde{\alpha}=\frac{3 \log 2}{\log 3}-\frac{\log b}{2 \log 3} \approx 1.1335$ where $b=$ $\frac{7+\sqrt{13}}{2}$.
In order for the multifractal formalism to hold, $f(\alpha)$ must be a concave function and the domain is an interval; i.e., the set of local dimensions of α forms an interval. This is true for all self-similar measures (actually more general) generated by IFS satisfying the open set condition [2, 6]. The above conclusion (ii) implies that the multifractal formalism fails for the convolution of the m-time convolution ($m \geq 3$) of the Cantor measure μ at least at $\bar{\alpha}$. Nevertheless, the formalism may still hold excluding $\bar{\alpha}$.

The proof of the theorems is combinatoric; it depends on some careful counting of the multiple representations of $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}, x_{j}=0, \ldots, m$, and the associated probability. We remark that there are recent investigations of the tenary expansions and other λ-expansions in connection with the fractal structure of the underlying sets [8-11].
In Section 2 we will give some preliminaries and prove some basic lemmas for counting. In Section 3 we prove Theorem 1.1 among the other results (Theorem 3.2, Theorem 3.6). In Section 4 we calculate the precise local dimensions and $\tilde{\alpha}$ for $m=3$ as stated in Theorem 1.2.

2. THE BASIC LEMMAS

Let ν be the standard Cantor measure and let $\mu=\nu * \cdots * \nu$ (m-times). Note that μ can be obtained in the following way: Let X be a random variable taking values $\{0,1, \ldots, m\}$ with probability

$$
p_{i}=P(X=i)=\frac{1}{2^{m}}\binom{m}{i}
$$

and let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of independent random variables with the same distribution as X. Let $S=\sum_{j=1}^{\infty} 3^{-j} X_{j}$. Then the range of S is $\left[0, \frac{m}{2}\right]$. Let $S_{n}=\sum_{j=1}^{n} 3^{-j} X_{j}$; then S_{n} takes values $s_{n} \in\left\{3^{-n} i: i=0,1, \ldots, m\left(3^{n}-\right.\right.$ 1)/2\}. Let μ_{n} and μ be the distribution measure of S_{n} and S, respectively.

Lemma 2.1. Suppose $m \geq 2$; then for any two consecutive $s_{n}=3^{-n} i, s_{n}^{\prime}=$ $3^{-n}(i-1)$, we have

$$
\frac{1}{(n+1) \theta} \leq \frac{\mu_{n}\left(s_{n}^{\prime}\right)}{\mu_{n}\left(s_{n}\right)} \leq(n+1) \theta,
$$

where

$$
\theta=\binom{m}{\left[\frac{m+1}{2}\right]}=\max _{1 \leq i \leq m} p_{i} / \min _{1 \leq i \leq m} p_{i}
$$

Proof. It is clear that the lemma is true for $n=1$. Suppose it is true for $n=k$. Consider $n=k+1$; then there is an integer r such that $s_{k+1}=$ $\sum_{j=1}^{k+1} 3^{-j} x_{j}=3^{-k} r+3^{-(k+1)} x_{k+1}$. We can write

$$
s_{k+1}=3^{-k}(r-j)+3^{-(k+1)}\left(x_{k+1}+3 j\right)
$$

where $r-j \geq 0$ and $0 \leq x_{k+1}+3 j \leq m$. Denote this set of j by J_{1}. It follows that

$$
\mu_{k+1}\left(s_{k+1}\right)=\sum_{j \in J_{1}} \mu_{k}\left(3^{-k}(r-j)\right) P\left(X=x_{k+1}+3 j\right)
$$

Similarly the preceding value $s_{k+1}^{\prime}=s_{k+1}-3^{-(k+1)}$ satisfies

$$
\mu_{k+1}\left(s_{k+1}^{\prime}\right)=\sum_{j \in J_{2}} \mu_{k}\left(3^{-k}(r-j)\right) P\left(X=\left(x_{k+1}-1\right)+3 j\right)
$$

where J_{2} is the set of j such that $0 \leq x_{k+1}-1+3 j \leq m$. Note that

$$
j \in J_{l} \quad \text { if and only if } \frac{-x_{k+1}+\epsilon_{l}}{3} \leq j \leq \frac{m-x_{k+1}+\epsilon_{l}}{3}
$$

where $\epsilon_{1}=0$ and $\epsilon_{2}=1, l=1,2$. There are three possibilities: (a) $J_{1} \subset J_{2}$, (b) $J_{2} \subset J_{1}$, and (c) $J_{1}=J_{2}$. In case (a), $j^{\prime}=\left(m-x_{k+1}+1\right) / 3$ is the only integer contained in $J_{2} \backslash J_{1}$ and $P\left(X=\left(x_{k+1}-1\right)+3 j^{\prime}\right)=P(X=m)=$ $\min _{0 \leq i \leq m} p_{i}$. Then

$$
\begin{aligned}
\frac{\mu_{k+1}\left(s_{k+1}^{\prime}\right)}{\mu_{k+1}\left(s_{k+1}\right)} & \leq \frac{\left(\max _{0 \leq i \leq m} p_{i}\right) \sum_{j \in J_{1}} \mu_{k}\left(3^{-k}(r-j)\right)+\mu_{k}\left(3^{-k}\left(r-j^{\prime}\right)\right) P(X=m)}{\left(\min _{0 \leq i \leq m} p_{i}\right) \sum_{j \in J_{1}} \mu_{k}\left(3^{-k}(r-j)\right)} \\
& =\theta+\frac{\mu_{k}\left(3^{-k}\left(r-j^{\prime}\right)\right)}{\sum_{j \in J_{1}} \mu_{k}\left(3^{-k}(r-j)\right)} \\
& \leq \theta+\frac{\mu_{k}\left(3^{-k}\left(r-j^{\prime}\right)\right)}{\mu_{k}\left(3^{-k}\left(r-\left(j^{\prime}-1\right)\right)\right)} \\
& \leq \theta+k \theta \quad(\text { by induction }) \\
& =(k+1) \theta .
\end{aligned}
$$

A similar proof implies that the lower bound of the quotient is $\frac{1}{(k+1) \theta}$. Case (b) follows by the same argument and case (c) is trivial.

Proposition 2.2. Let $m \geq 2$; then

$$
\alpha(s)=\lim _{n \rightarrow \infty}\left|\frac{\log \mu_{n}\left(s_{n}\right)}{n \log 3}\right|
$$

provided that the limit exists. Otherwise we can replace $\alpha(s)$ by $\bar{\alpha}(s)$ and $\underline{\alpha}(s)$ and consider the upper and the lower limits.

Proof. By definintion it is clear that

$$
\alpha(s)=\lim _{n \rightarrow \infty}\left|\frac{\log \mu\left(B_{3-n}(s)\right)}{n \log 3}\right|
$$

Also it is easy to prove that

$$
\mu\left(B_{3^{-n}}(s)\right) \leq \mu_{n}\left(B_{r 3^{-n}}(s)\right) \leq \mu\left(B_{2 r 3^{-n}}(s)\right)
$$

for $r=1+\frac{m}{2}$ and $B_{r 3^{-n}}(s)$ contains at most $[2 r]$ consecutive $s_{n}([x]$ is the greatest integer $\leq x$). The proposition hence follows from the lemma.

It is clear that if $m \geq 3$, then the series representation $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}$ is not unique. In the following we will prove a key lemma concerning the multiple representations of s. It will be used throughout the paper.

Proposition 2.3. Let $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}, \quad s^{\prime}=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$, and $s-s^{\prime}=$ $\sum_{j=1}^{\infty} 3^{-j} y_{i}$.
(i) If $s_{n}=s_{n}^{\prime}$, then $x_{n} \equiv x_{n}^{\prime}(\bmod 3)$. If, further, we assume that $\left|y_{j}\right| \leq 3$ for all j, then $\left(y_{1}, \ldots, y_{n}\right)$ can be decomposed as segments of the forms

$$
\begin{equation*}
(0,0, \ldots, 0), \quad \pm(-1,3) \quad \text { and } \quad \pm(-1,2, \ldots, 2,3) \tag{2.1}
\end{equation*}
$$

(ii) Conversely if $\left(y_{1}, \ldots, y_{n}, \ldots\right)$ can be decomposed as segments as in (2.1) or $\pm(-1,2,2, \ldots)$, then $s=s^{\prime}$.

Proof. To prove the first statement in (i), we multiply 3^{n} to $s_{n}-s_{n}^{\prime}=0$. It follows that

$$
3^{n}\left(x_{1}-x_{1}^{\prime}\right)+\cdots+3\left(x_{n-1}-x_{n-1}^{\prime}\right)+\left(x_{n}-x_{n}^{\prime}\right)=0
$$

and hence $x_{n} \equiv x_{n}^{\prime}(\bmod 3)$. For the second statement in (i), we note that the last non-zero term of y_{1}, \ldots, y_{n} must be congruent to 0 module 3 . Since $\left|y_{j}\right| \leq 3$, we can assume without loss of generality that $y_{n}=3$. Hence by rewriting $s_{n}=s_{n}^{\prime}$ as

$$
\begin{equation*}
\sum_{j=1}^{n-2} 3^{-j} y_{j}+3^{-(n-1)}\left(y_{n-1}+1\right)=0 \tag{2.2}
\end{equation*}
$$

we see that $y_{n-1}+1 \equiv 0(\bmod 3)$. Since $\left|y_{j}\right| \leq 3$, either $y_{n-1}=-1$ or 2 . If $y_{n-1}=-1$, then $\left(y_{n-1}, y_{n}\right)=(-1,3)$ as asserted. We repeat the same argument to $\sum_{j=1}^{n-2} 3^{-j} y_{j}=0$. If $y_{n-1}=2$, then we can write (2.2) as $\sum_{j=1}^{n-2} 3^{-j} y_{j}+$ $3^{-(n-2)}=0$ so that

$$
\sum_{j=1}^{n-3} 3^{-j} y_{j}+3^{-(n-2)}\left(y_{n-2}+1\right)=0
$$

This is the same form as (2.2) and the process can be repeated. The proof for (ii) is trivial.

We conclude this section by introducing some notations. For $s=$ $\sum_{j=1}^{\infty} 3^{-j} x_{j}$, we write the digits by the vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and let $\langle s\rangle$ be the equivalent class of the $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right)$ such that $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$. Also we let

$$
\left\langle s_{n}\right\rangle=\left\{\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right): s_{n}=\sum_{j=1}^{n} 3^{-j} x_{j}^{\prime}\right\}
$$

3. THE EXTREME LOCAL DIMENSIONS

In this section, we assume that μ is the m th convolution of the Cantor measure, $m \geq 2$. Then μ is supported by [$\left.0, \frac{m}{2}\right]$. Let

$$
\bar{\alpha}=\sup \{\bar{\alpha}(s): s \in \operatorname{supp} \mu\} \quad \text { and } \quad \underline{\alpha}=\inf \{\underline{\alpha}(s): s \in \operatorname{supp} \mu\} .
$$

Proposition 3.1. For $m \geq 2, \bar{\alpha}=\frac{m \log 2}{\log 3}$ and the value is attained at $s=0$ or $\frac{m}{2}$.
Proof. Let $s=\sum_{j=1}^{\infty} 3^{-j} x_{j} \in\left[0, \frac{m}{2}\right]$. Then

$$
\mu_{n}\left(s_{n}\right) \geq \prod_{j=1}^{n} P\left(X=x_{j}\right) \geq 2^{-m n}
$$

It follows from Proposition 2.2 that

$$
\bar{\alpha}(s)=\varlimsup_{n \rightarrow \infty}\left|\frac{\log \mu_{n}\left(s_{n}\right)}{n \log 3}\right| \leq \varlimsup_{n \rightarrow \infty}\left|\frac{\log 2^{-m n}}{n \log 3}\right| .
$$

On the other hand consider $s=0$ or $s=\frac{m}{2}$; they have unique digit representation $(0,0, \ldots)$ or (m, m, \ldots) respectively. By Proposition 2.2 and a direct calculation, it is clear that $\bar{\alpha}(s)=\frac{m \log 2}{\log 3}$.

Let $K(\alpha)=\{s \in \operatorname{supp} \mu: \alpha(s)=\alpha\}$, i.e., the set of points s such that the local dimension of μ at s is α.

Theorem 3.2. Let $m \geq 3$. Then
(i) $K(\bar{\alpha})=\left\{0, \frac{m}{2}\right\}$.
(ii) $K(\alpha)=\phi$ for all $\alpha^{*}<\alpha<\bar{\alpha}$, where

$$
\alpha^{*}= \begin{cases}\frac{m \log 2}{\log 3}-\frac{\log \binom{m}{m / 2-1}}{\log 3}, & \text { if } m \text { is even } \\ \frac{m \log 2}{\log 3}-\frac{\log \binom{m}{(m+1) / 2}+\log \binom{m}{(m+1) / 2-2}}{2 \log 3}, & \text { if } m \text { is odd }\end{cases}
$$

The unexpected part of the theorem is that there is no point the local dimension of μ is between α^{*} and $\bar{\alpha}$. Note that (ii) of the theorem is not true for $m=2$ (see [4]). We need a few technical lemmas to prove the theorem. The main idea is that for any s other than 0 and $\frac{m}{2}$, we can find another representation with digits around the middle of $0,1, \ldots, m$ so that s will associate with a heavier weight. The local dimension can be computed to be much smaller than $\bar{\alpha}$ and hence produces a gap there. The first one is a pre-lemma of Lemma 3.4.

Lemma 3.3. Let $m \geq 3$ and let $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j} \in\left(0, \frac{m}{2}\right)$. Then for any fixed $3 \leq r \leq m$, there exists k and another representation $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ such that $0 \leq x_{j}^{\prime} \leq r-1$ for all $j \geq k$.

Proof. We assume the contrary; let $q=\max \left\{x_{j}: j>1\right\} \geq r, x_{1} \neq q$ and there are infinitely many $x_{j}=q$. We can use the following procedure repeatedly to reduce the size of q until $q \leq r-1$.
(i) There exists i_{0} such that $x_{j}=q$ for all $j>i_{0}$ and $x_{i_{0}}<q$. Let $x_{i_{0}}^{\prime}=x_{i_{0}}+1, \quad x_{j}^{\prime}=x_{j}-2 \quad \forall j>i_{0}, \quad$ and $\quad x_{j}^{\prime}=x_{j} \quad \forall j<i_{0}$. Then by Proposition 2.3(ii), $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ and $\max _{j>i_{0}}\left\{x_{j}^{\prime}\right\}=q-2$.
(ii) If $x_{j}<q$ for infinitely many j, we can assume without loss of generality that $x_{1}<q-1$ (this condition will appear in the following x_{n}^{\prime} in the second iteration) and let n be the smallest integer such that $x_{n}=q$. Let i_{0} be the largest integer less than n such that $x_{i_{0}}<q-1$. Let
$x_{i_{0}}^{\prime}=x_{i_{0}}+1, \quad x_{n}^{\prime}=x_{n}-3, \quad x_{j}^{\prime}=x_{j}-2 \quad$ for $\quad i_{0}<j \leq n-1$,
and $x_{j}^{\prime}=x_{j}$ otherwise. Then $s=\Sigma_{n=1}^{\infty} 3^{-j} x_{j}^{\prime}$ by Proposition 2.3(ii) and $0 \leq x_{j}^{\prime} \leq q-1$, for $1 \leq j \leq n$. We will repeat this procedure to have all $x_{j} \leq q-1$.

Lemma 3.4. Suppose that $m \geq 3$ and $0 \leq r \leq m-2$. Let $s=\sum_{j=1}^{\infty} 3^{-j} x_{j} \in$ ($0, \frac{m}{2}$); then there exists k and another representation $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ such that $x_{j}^{\prime} \in\{r, r+1, r+2\}$ for all $j \geq k$.
Proof. By Lemma 3.3 (apply to $r+3$) we can assume without loss of generality that $0 \leq x_{j} \leq r+2$ for all j. If $r=0$, the lemma is automatic. Hence we assume that $r>0$; we show that we can replace $x_{j}=0$ by $1 \leq x_{j}^{\prime} \leq r+2$, where $r \geq 1$. Assume that there exist some $x_{n}=0$. We need to deal with two cases.
(i) If $x_{j}=0$ or 1 for all j, let $j_{0}=\min \left\{j: x_{j}=1\right\}$. Define

$$
x_{j}^{\prime}=0 \quad \text { for } j \leq j_{0}, \quad x_{j}^{\prime}=x_{j}+2 \quad \text { for } \quad j>j_{0} .
$$

Then $2 \leq x_{j}^{\prime} \leq 3 \leq r+2$ for $j>j_{0}$ and $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ by Proposition 2.3.
(ii) Otherwise consider a segment of the form $\left(x_{i}, x_{i+1}, \ldots, x_{n}\right)$ with $x_{i}>1, x_{i+1}, \ldots, x_{n-1}=0$ or 1 and $x_{n}=0$. We define

$$
x_{i}^{\prime}=x_{i}-1, \quad x_{n}^{\prime}=x_{n}+3, \quad \text { and } \quad x_{j}^{\prime}=x_{j}+2, \quad i<j \leq n-1 .
$$

Then $s=\sum_{j=1}^{n} 3^{-j} x_{j}^{\prime}$ and $x_{j}^{\prime}>0$ for $i \leq j \leq n$. We repeat this process until all the 0 after x_{n} are replaced.

After we have $1 \leq x_{j}^{\prime} \leq r+2$ we can repeat the same process until we obtain a representation $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime \prime}$ with $r \leq x_{j}^{\prime \prime} \leq r+2$.

Lemma 3.5. Suppose $m \geq 3$ and $0 \leq r \leq m-2$. Let $s=\sum_{j=1}^{\infty} 3^{-j} x_{j} \in$ ($0, \frac{m}{2}$); then there exists k and another representation $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ satisfying
(i) $x_{j}^{\prime} \in\{r, r+1, r+2, r+3\}$ for all $j \geq k$.
(ii) For any $j \geq k,\left(x_{j}^{\prime}, x_{j+1}^{\prime}\right) \neq(r, r),(r, r+3),(r+3, r)$, $(r+3, r+3)$.

Consequently if n^{\prime} is the total number of digits x_{j}^{\prime} such that $x_{j}^{\prime}=r+1$ or $r+2$, then $n^{\prime} \geq(n-k) / 2$.

Proof. By Lemma 3.4, we can assume that $x_{j} \in\{r, r+1, r+2\}$. For convenience we also let $r=0$ so that $x_{j}=0,1$ or 2 . We need to replace the segments $\left(x_{j}, \ldots, x_{j+k}\right)=(0, \ldots, 0), k \geq 1$, to satisfy conditions (i) and (ii).

Without loss of generality we assume that $x_{1} \neq 0$. Let $\left(x_{i_{0}}, \ldots, x_{i_{0}+k}\right)$ be the first segement of 0 with $x_{i_{0}-1}$ and $x_{i_{0}+k+1} \geq 1$. If $\left(x_{1}, x_{2}, \ldots, x_{i_{0}-1}\right)=$ $(1,0,1,0, \ldots, 1,0,1)$, then let $j_{0}=1$. Otherwise $\left(x_{1}, x_{2}, \ldots, x_{i_{0}-1}\right)$ contains a 2 or $(1,1)$; we let

$$
j_{0}=\max \left\{j<i_{0}: x_{j}=2 \text { or }\left(x_{j-1}, x_{j}\right)=(1,1)\right\} .
$$

(Note that for $j_{0}<j<i_{0}$, the digits x_{j} are alternative 0 and 1.) We define

$$
x_{j_{0}}^{\prime}=x_{j_{0}}-1, \quad x_{j}^{\prime}=x_{j}+2 \quad \text { for } j_{0}<j \leq i_{0}+k-1, \quad x_{i_{0}+k}^{\prime}=3
$$

and $x_{j}^{\prime}=x_{j}$ otherwise. Then $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ and for $1 \leq j \leq i_{0}+k, x_{j}^{\prime}$ satisfy conditions (i) and (ii) of the lemma. We repeat this argument for $j>i_{0}+k$ and (i) and (ii) of the lemma will follow. The second part is clear.

Proof of Theorem 3.2. If m is even, then by Lemma 3.4, there exists k and another series representation $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}^{\prime}$ such that $x_{j}^{\prime} \in\left\{\frac{m}{2}-\right.$ $\left.1, \frac{m}{2}, \frac{m}{2}+1\right\}$ for all $j \geq k$. It follows that

$$
\mu_{n}\left(s_{n}\right) \geq \prod_{j=1}^{n} P\left(X=x_{j}^{\prime}\right) \geq C\left(2^{-m}\binom{m}{\frac{m}{2}-1}\right)^{n}
$$

(C depends on k) so that

$$
\bar{\alpha}(s)=\varlimsup_{n \rightarrow \infty}\left|\frac{\log \mu_{n}\left(s_{n}\right)}{n \log 3}\right| \leq \alpha^{*} .
$$

If m is odd, we take $x_{j}^{\prime} \in\{r, r+1, r+2, r+3\}$ where $r=\frac{m+1}{2}-2$; then by Lemma 3.5,

$$
\mu_{n}\left(s_{n}\right) \geq \prod_{j=1}^{n} P\left(X=x_{j}^{\prime}\right) \geq C\left(2^{-m}\binom{m}{\frac{m+1}{2}}\right)^{n / 2}\left(2^{-m}\binom{m}{\frac{m+1}{2}-2}\right)^{n / 2}
$$

and $\bar{\alpha}(s) \leq \alpha^{*}$. Now (i) and (ii) follow from this and Proposition 3.1.
Our second theorem is concerned with the smallest local dimension $\underline{\alpha}$. We can prove it only for the case $m \leq 4$.

Theorem 3.6. Let $2 \leq m \leq 4$. Then

$$
\underline{\alpha}= \begin{cases}\frac{3 \log 2}{\log 3}-1 \approx 0.89278 & \text { if } m=3 \text { or } 4, \\ \frac{\log 2}{\log 3} \approx 0.63093 & \text { if } m=2\end{cases}
$$

Moreover the infimum is attained at $s=\sum_{j=1}^{\infty} 3^{-j}=\frac{1}{2}$ if $m=2 ; s=$ $\sum_{j=1}^{\infty} 3^{-j} 2=1$ if $m=4 ;$ and $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}, \quad x_{j}=1$ or 2 if $m=3$.

Proof. We will prove the theorem for $m=4$. The case for $m=3$ and $m=2$ can be handled in the same way. Let $t=\sum_{j=1}^{\infty} 3^{-j}$. We claim that $\left\langle t_{n}\right\rangle=\{(2, \ldots, 2)\}$. Indeed for $\left(x_{1}, \ldots, x_{n}\right) \in\left\langle t_{n}\right\rangle$, by Proposition 2.3(i), $x_{n}-t_{n} \equiv 0(\bmod 3)$; hence $x_{n}=2$ also. Thus $\left(x_{1}, \ldots, x_{n-1}\right) \in\left\langle t_{n-1}\right\rangle$ and a simple induction implies that $x_{i}=2,1 \leq i \leq n$. Hence

$$
\mu_{n}\left(t_{n}\right)=\left(2^{-4}\binom{4}{2}\right)^{n}=\left(\frac{6}{2^{4}}\right)^{n}
$$

and

$$
\underline{\alpha}(t)=\lim _{n \rightarrow \infty}\left|\frac{\log \mu_{n}\left(t_{n}\right)}{n \log 3}\right|=\frac{3 \log 2}{\log 3}-1=\underline{\alpha} .
$$

It remains to show that for any $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}, \mu_{n}\left(s_{n}\right) \leq \mu_{n}\left(t_{n}\right)$ so that $\underline{\alpha}(s) \geq \underline{\alpha}$. We will prove this by induction. For the case $n+1$,we divide it
into three cases:
(i) If $x_{n+1}=2$, then

$$
\mu_{n+1}\left(s_{n+1}\right)=\mu_{n}\left(s_{n}\right) P(X=2) \leq\left(\frac{6}{2^{4}}\right)^{n}\left(\frac{6}{2^{4}}\right)=\mu_{n+1}\left(t_{n+1}\right) .
$$

(ii) If $x_{n+1}=0$ (or 3), then by Proposition 2.3(i), for any other representation $s_{n+1}=\sum_{j=1}^{n+1} 3^{-j} x_{j}^{\prime}, x_{n+1}^{\prime}$ has two choices: 0 or 3 . Let $s_{n}^{(1)}, s_{n}^{(2)}$ be the corresponding n-sum of the two choices; then

$$
s_{n+1}=s_{n}^{(1)}+3^{-(n+1)} 0=s_{n}^{(2)}+3^{-(n+1)} 3 .
$$

By the induction hypothesis we have

$$
\begin{aligned}
\mu_{n+1}\left(s_{n+1}\right) & =\mu_{n}\left(s_{n}^{(1)}\right) P(X=0)+\mu_{n}\left(s_{n}^{(2)}\right) P(X=3) \\
& =\mu_{n}\left(s_{n}^{(1)}\right)\left(\frac{1}{2^{4}}\right)+\mu_{n}\left(s_{n}^{(2)}\right)\left(\frac{4}{2^{4}}\right) \\
& \leq \mu_{n}\left(t_{n}\right)\left(\frac{5}{2^{4}}\right)=\left(\frac{6}{2^{4}}\right)^{n}\left(\frac{5}{2^{4}}\right) \\
& <\left(\frac{6}{2^{4}}\right)^{n+1}=\mu_{n+1}\left(t_{n+1}\right) .
\end{aligned}
$$

(iii) If $x_{n+1}=1$ (or 4), the proof is the same as (ii) since $P(X=0)=$ $P(X=4)$ and $P(X=1)=P(X=3)$.

4. THE EXACT RANGE OF LOCAL DIMENSION: $m=3$

In this section we only consider that μ is the three time convolution of the standard Cantor measure. In last section we showed that there is no $s \in \operatorname{supp} \mu$ with local dimension $\alpha \in\left(\alpha^{*}, \bar{\alpha}\right)$ where $\alpha^{*}=\frac{3 \log 2}{\log 3}-\frac{1}{2}$ and $\bar{\alpha}=\frac{3 \log 2}{\log 3}$. However, such α^{*} is not the best possible value. We will sharpen this result in the sequel.

Lemma 4.1. Let $0<\beta_{1}, \beta_{2}$ be fixed and let $\beta_{n+1}=4 \beta_{n}+\sum_{j=1}^{n-1} 3^{n-j} \beta_{j}$. Then
(i) $\beta_{n+1}=7 \beta_{n}-9 \beta_{n-1}$.
(ii) $\beta_{n+1}=c b^{n}+c^{\prime} b^{\prime n}$ where $b, b^{\prime}=\frac{7 \pm \sqrt{13}}{2}(\approx 5.3,1.7$, respectively $)$ are roots of $x^{2}-7 x+9=0$, and c and c^{\prime} depend on β_{1} and β_{2}.

Proof. By definition,

$$
\beta_{n+1}=4 \beta_{n}+3\left(\beta_{n-1}+\sum_{j=1}^{n-2} 3^{n-1-j} \beta_{j}\right)=4 \beta_{n}+3\left(\beta_{n}-3 \beta_{n-1}\right) .
$$

So (i) follows. It is easy to show that $\left\{\beta_{n}\right\}$ is an increasing sequence and $b=\lim _{n \rightarrow \infty} \beta_{n+1} / \beta_{n}$ satisfies $b^{2}-7 b+9=0$. The expression of β_{n} in (ii) follows from [1, Chap. 6].

We remark that c, c^{\prime} are uniquely determinined by the two equations $c+c^{\prime}=\beta_{1}, c b+c^{\prime} b^{\prime}=\beta_{2} ;$ i.e.,

$$
c=\frac{\beta_{2}-\beta_{1} b^{\prime}}{b-b^{\prime}} \quad \text { and } \quad c^{\prime}=\frac{\beta_{1} b-\beta_{2}}{b-b^{\prime}} .
$$

In the later part we will have $\beta_{2} \geq 4 \beta_{1}$ so that c is always positive, but c^{\prime} can be positive or negative. If $c^{\prime}>0$, then $\beta_{n+1}>c b^{n}$. If $c^{\prime}<0$, then $\beta_{n+1} \geq\left(c+c^{\prime}\right) b^{n}=\beta_{1} b^{n}$.

The calculation in this section depends very much on the following special t and its variations.
Lemma 4.2. Let $t=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}=\frac{1}{8}$ with $\mathbf{x}=(0,1,0,1, \ldots)$. Then

$$
\mu_{2 n-1}\left(t_{2 n-1}\right)=\frac{\beta_{n}}{8^{2 n-1}}, \quad \mu_{2 n}\left(t_{2 n}\right)=\frac{3 \beta_{n}}{8^{2 n}},
$$

where β_{n} is defined as in Lemma 4.1 with $\beta_{1}=1, \beta_{2}=4$. In this case $\beta_{n} \geq 0.63 b^{n-1}$.

Proof. For $n=1, \mu_{1}\left(t_{1}\right)=\frac{1}{8}=\beta_{1} / 8$. For $n=2$, by Proposition 2.3(i) we see that t_{3} has two representations: $\left\langle t_{3}\right\rangle=\{(0,1,0),(0,0,3)\}$. Therefore

$$
\mu_{3}\left(t_{3}\right)=p_{0} p_{1} p_{0}+p_{0} p_{0} p_{3}=\frac{4}{8^{3}}=\frac{\beta_{2}}{8^{3}} .
$$

For n we observe that for $\left(x_{1}^{\prime}, \ldots, x_{2 n-1}^{\prime}\right) \in\left\langle t_{2 n-1}\right\rangle$, Proposition 2.3(i) implies that $0-x_{2 n-1}^{\prime} \equiv 0(\bmod 3)$. We have the following two cases for $x_{2 n-1}^{\prime}$.
(a) $x_{2 n-1}^{\prime}=3$: By Proposition 2.3(ii) we can find an i such that

$$
\left(x_{i}-x_{i}^{\prime}, \ldots, x_{2 n-1}-x_{2 n-1}^{\prime}\right)=(1,-2, \ldots,-2,-3) .
$$

Note that $x_{i}-x_{i}^{\prime}=1-x_{i}^{\prime}=1$ implies that $x_{i}=1, x_{i}^{\prime}=0$; i.e., i is an even integer and hence

$$
\left(x_{i}^{\prime}, \ldots, x_{2 n-1}^{\prime}\right)=(0,2,3,2,3, \ldots, 2,3,3) .
$$

Let $i=2 k$; then the digit 2 occurs $(n-k-1)$ times, 3 occurs $(n-k)$ times, and 0 occurs once.
(b) $x_{2 n-1}^{\prime}=0$: By Proposition 2.3(ii), the preceding term $x_{2 n-2}^{\prime}$ must be 1 so that $t_{2 n-3}=t_{2 n-3}^{\prime}$.

We see that $t_{2 n-1}$ has only two representations as in (a), (b); hence

$$
\begin{aligned}
\mu_{2 n-1}\left(t_{2 n-1}\right) & =\mu_{2 n-3}\left(t_{2 n-3}\right) p_{1} p_{0}+\sum_{k=1}^{n-1} \mu_{2 k-1}\left(t_{2 k-1}\right) p_{0} p_{2}^{n-k-1} p_{3}^{n-k} \\
& =\frac{3 \beta_{n-1}}{8^{2 n-1}}+\sum_{k=1}^{n-1} 3^{(n-k-1)} \frac{\beta_{k}}{8^{2 n-1}}=\frac{\beta_{n}}{8^{2 n-1}} .
\end{aligned}
$$

This completes the induction for the first equality. For the even case we observe that $t_{2 n}=t_{2 n-1}+3^{-2 n}$ is the only representation for $s_{2 n}$. This implies that

$$
\mu_{2 n}\left(t_{2 n}\right)=\mu_{2 n-1}\left(t_{2 n-1}\right) \frac{3}{8}=\frac{3 \beta_{n}}{8^{2 n}} .
$$

The last inequality follows from the remark after Lemma 4.1 with $c \geq 0.63$.
Corollary 4.3. Let $\mathbf{x}_{t}=(0,1,0,1, \ldots)$ and for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ let $s=$ $\sum_{j=1}^{\infty} 3^{-j} x_{j}$
(i) If $\mathbf{x}=\left(2, \mathbf{x}_{t}\right)$, then

$$
\frac{6 b^{n-1}}{8^{2 n}} \leq \mu_{2 n}\left(s_{2 n}\right) \leq \frac{7 b^{n-1}}{8^{2 n}}
$$

(ii) If $\mathbf{x}=\left(2,3,1, \mathbf{x}_{t}\right)$, then

$$
\frac{4 b^{n-1}}{8^{2 n}} \leq \mu_{2 n}\left(s_{2 n}\right) \leq \frac{7 b^{n-1}}{8^{2 n}}
$$

(iii) If $\mathbf{x}=\left(1,1, \mathbf{x}_{t}\right),\left(2,1, \mathbf{x}_{t}\right),\left(1,2, \mathbf{x}_{t}\right)$ or $\left(2,2, \mathbf{x}_{t}\right)$, then

$$
\frac{2 b^{n}}{8^{2 n+1}} \leq \mu_{2 n+1}\left(s_{2 n+1}\right) \leq \frac{4 b^{n}}{8^{2 n+1}} .
$$

Proof. (i) Consider $\mathbf{x}=\left(2, \mathbf{x}_{t}\right)=(2,0,1,0, \ldots) . s_{2}$ has two representations, $(2,0)$ and $(1,3)$, so that

$$
\mu_{2}\left(s_{2}\right)=\frac{3+3}{8^{2}}=\frac{6}{8^{2}}:=\frac{\beta_{1}}{8^{2}} .
$$

s_{4} has five representations, $(2,0,1,0),(1,3,1,0),(2,0,0,3),(1,3,0,3)$, $(1,2,3,3)$; hence

$$
\mu_{4}\left(s_{4}\right)=\frac{9+9+3+3+9}{8^{4}}=\frac{33}{8^{4}}:=\frac{\beta_{2}}{8^{4}} .
$$

Now using the same argument as in Lemma 4.2, we have $\mu_{2 n}\left(s_{2 n}\right)=\beta_{n} / 8^{2 n}$, where $\beta_{1}=6, \beta_{2}=33$. We can calculate $c^{\prime} \approx-0.33, c \approx 6.33$ as in Lemma 4.1. By the remark after Lemma 4.1, we have $6 b^{n-1} \leq \beta_{n} \leq 7 b^{n-1}$ and (i) follows.
(ii) For $\mathbf{x}=\left(2,3,1, \mathbf{x}_{t}\right), s_{2}$ has two representations, $(2,3)$ and $(3,0)$; s_{4} has five representations, $(2,3,1,0),(2,3,0,3),(3,0,1,0),(3,0,0,3)$, and ($2,2,3,3$). Hence we have $\beta_{1}=4, \beta_{2}=25$, and we can show that $c \approx 5.05, c^{\prime} \approx-1.05$. This implies that $4 b^{n-1} \leq \beta_{n} \leq 7 b^{n-1}$.
(iii) The proof is similar.

Theorem 4.4. Let $\tilde{\alpha}=\frac{3 \log 2}{\log 3}-\frac{\log b}{2 \log 3} \approx 1.1335$. Then $K(\alpha)=\phi$ for all $\tilde{\alpha}<\alpha<\bar{\alpha}$. Moreover the value $\tilde{\alpha}$ is attained at $t=\sum_{j=1}^{\infty} 3^{-i} x_{j}($ i.e., $\alpha(t)=\tilde{\alpha})$ where $\left(x_{1}, x_{2}, \ldots\right)=(0,1,0,1, \ldots)$.

Remark. This improves Theorem 3.2 for $m=3$ where $\alpha^{*}=\frac{3 \log 2}{\log 3}-\frac{1}{2} \approx$ 1.39278.

Proof. Let $t=\sum_{j=1}^{\infty} 3^{-j} x_{j}$ where $\left(x_{1}, x_{2}, \ldots\right)=(0,1,0,1, \ldots)$. That $\alpha(t)=\tilde{\alpha}$ is a direct consequence of Lemma 4.2. We claim that for any $s=\Sigma_{j=1}^{\infty} 3^{-j} x_{j}$ with $x_{j}=0,1,2,3$, there is a constant c depending on s such that

$$
\begin{equation*}
\mu_{2 n}\left(s_{2 n}\right) \geq \frac{c b^{n}}{8^{2 n}} \quad \text { and } \quad \mu_{2 n+1}\left(s_{2 n+1}\right) \geq \frac{c b}{3} \frac{b^{n}}{8^{2 n+1}} . \tag{4.1}
\end{equation*}
$$

This will imply $K(\alpha)=\phi$ for $\tilde{\alpha}<\alpha<\bar{\alpha}$.
To prove the claim, we can assume, by Lemma 3.4, that $x_{j}=0,1$, or 2. For convenience we assume further that $x_{1}=1$ (or 2) and $c=\frac{1}{2}$ (otherwise, we can start from the first non-zero term and adjust the constant c). We will prove the statement by two inductive steps:

Step 1. We show that for $1 \leq n \leq n_{0}$,

$$
\mu_{2 n}\left(s_{2 n}\right) \geq \frac{c b^{n}}{8^{2 n}} \quad \Rightarrow \quad \mu_{2 n+1}\left(s_{2 n+1}\right) \geq \frac{c b}{3} \frac{b^{n}}{8^{2 n+1}} .
$$

It is straightforward to verify this for $n=1$. Suppose it is true for $n=k-1$ and consider $n=k$. If the final digit $x_{2 k+1}$ is 1 or 2 , then

$$
\mu_{2 k+1}\left(s_{2 k+1}\right)=\mu_{2 k}\left(s_{2 k}\right) p_{1} \geq \frac{c b^{k}}{8^{2 k}} \frac{3}{8} \geq \frac{c b}{3} \frac{b^{k}}{8^{2 k+1}} .
$$

If the final digit $x_{2 k}=0$, then we run the digits 0 and 1 alternatively backward and stop at i until one of the following cases occurs:
(i) $\left(x_{1}, \ldots, x_{i}, 2,0,1, \ldots, 0,1,0\right)$;
(ii) $\left(x_{1}, \ldots, x_{i}, 1,0,1, \ldots, 0,1,0\right)$, where $x_{i} \neq 0$;
(iii) $\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0,1, \ldots, 0,1,0\right)$ where $x_{i} \neq 0$ and there are at least two consecutive zeros starting from the $(i+1)$ th term.

In case (i) we see that i is odd. Write $i=2 j+1$; then by Corollary 4.3(i) and induction,

$$
\mu_{2 k+1}\left(s_{2 k+1}\right) \geq \mu_{2 j+1}\left(s_{2 j+1}\right) \frac{6 b^{k-j-1}}{8^{2(k-j)}}>\frac{c b}{3} \frac{b^{j}}{8^{2 j+1}} \frac{6 b^{k-j-1}}{8^{2(k-j)}}>\frac{c b}{3} \frac{b^{k}}{8^{2 k+1}} .
$$

In case (ii), $i=2 j+1$ for some j; we divide the digits into two segments $\left(x_{1}, \ldots, x_{i-1}\right)$ and $\left(x_{i}, 1,0,1, \ldots, 1,0\right)$. Then

$$
\mu_{2 k+1}\left(s_{2 k+1}\right) \geq \mu_{2 j}\left(s_{2 j}\right) \frac{2 b^{k-j}}{8^{2(k-j)+1}} \geq \frac{c b^{j}}{8^{2 j}} \frac{2 b^{k-j}}{8^{2(k-j)+1}}>\frac{c b}{3} \frac{b^{k}}{8^{2 k+1}} .
$$

In (iii) we consider the case with $x_{i}=1$ and only two consecutive zeros after x_{i} (for the case of more zeros or $x_{i}=2$, the proof is the same). It is clear that i is odd. Write $i=2 j+1$. There are at least two representations as follows. We divide the digits into two subcases (by parentheses) for calculation:
(a) $\left(x_{1}, \ldots, x_{i-1}, 1,0\right)(0,1,0,1,0, \ldots, 1,0)$.
(b) $\left(x_{1}, \ldots, x_{i-1}, 0\right)(2,3,1,0,1,0, \ldots, 1,0)$.

Using induction and Lemma 4.2 with $\beta_{n} \geq 0.63 b^{n-1}$ as well as Corollary 4.3(ii) we have

$$
\begin{aligned}
\mu_{2 k+1}\left(s_{2 k+1}\right) & \geq \frac{c b^{j+1}}{8^{2(j+1)}} \frac{\beta_{k-j}}{8^{2 k-2 j-1}}+\frac{c b}{3} \frac{b^{j}}{8^{2 j+1}} \frac{4 b^{k-j-1}}{8^{2(k-j)}} \\
& \geq \frac{c b^{k}}{8^{2 k+1}}\left(0.63+\frac{4}{3}\right)>\frac{c b}{3} \frac{b^{k}}{8^{2 k+1}} .
\end{aligned}
$$

This proves the claim of Step 1.
Step 2. To prove (4.1), assume that the statement is true for $2 n$ and then use Step 1 to prove the case $2 n+1$. Then follow by the same induction method as in Step 1 to prove the case $2(n+1)$.

In the above we see that if $\mathbf{x}=(2,2, \ldots)$ or $(0,1,0,1, \ldots)$, then the corresponding sum $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}$ has the smallest local dimension $\underline{\alpha}$ and the second largest local dimension $\tilde{\alpha}$, respectively. We will show that $(\underline{\alpha}, \tilde{\alpha})$ is the essential range of the local dimension of μ, i.e., for $\alpha \in(\underline{\alpha}, \tilde{\alpha})$; by suitably arranging the above two patterns of \mathbf{x}, we can find an $s \in \operatorname{supp} \mu$ such that $\alpha(s)=\alpha$.
We need a few notations. Let $\left\{k_{j}\right\}_{j=1}^{\infty}$ be a sequence of positive integers, let n_{l} be the l th partial sum of $\left\{k_{j}\right\}_{j=1}^{\infty}$, and e_{l} and o_{l} are the respective sums of the even and odd terms of $\left\{k_{j}\right\}_{j=1}^{l}$. Obviously $n_{l}=o_{l}+e_{l}$.

Lemma 4.5. Let $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}$, where

$$
\mathbf{x}=(\underbrace{2, \ldots, 2}_{k_{1}}, \underbrace{2,0,1,0, \ldots, 1,0}_{k_{2}}, \underbrace{2, \ldots, 2}_{k_{3}}, \underbrace{2,0,1,0, \ldots, 1,0,}_{k_{4}} \ldots) .
$$

Then there exists $c, d>0$ such that

$$
\begin{equation*}
\frac{c^{[l / 2]} 3^{o_{l}} b^{e_{l} / 2}}{8^{n_{l}}} \leq \mu_{n_{l}}\left(s_{n_{l}}\right) \leq \frac{d^{[l / 2]} 3^{o_{l}} b^{e_{l} / 2}}{8^{n_{l}}} \tag{4.2}
\end{equation*}
$$

Proof. We can modify Corollary $4.3(\mathrm{i})$ for $\bar{s}=\sum_{j=1}^{\infty} 3^{-j} \bar{x}_{j}$ with $\overline{\mathbf{x}}=(2,0,1,0,1, \ldots)$ to find $c, d>0$ such that

$$
\begin{equation*}
\frac{c b^{n / 2}}{8^{n}} \leq \mu_{n}\left(\bar{s}_{n}\right) \leq \frac{d b^{n / 2}}{8^{n}} \tag{4.3}
\end{equation*}
$$

We now use induction to prove (4.2). For $l=1, \mu_{n_{1}}\left(s_{n_{1}}\right)=\left(\frac{3}{8}\right)^{o_{1}}$ and the lemma is trivially true. For $l=2$, suppose $\left(y_{1}, \ldots, y_{k_{1}}, y_{k_{1}+1}, \ldots, y_{k_{1}+k_{2}}\right)$ is another representation of $s_{k_{1}+k_{2}}$ corresponding to $\left(x_{1}, \ldots, x_{k_{1}+k_{2}}\right)=$ $(2, \ldots, 2,2,0,1, \ldots, 1,0)$. We first claim that $y_{1}=2$. Otherwise by Proposition 2.3 , we necessarily have

$$
\left(x_{1}-y_{1}, \ldots, x_{k_{1}+1}-y_{k_{1}+1}\right)=(-1,2, \ldots, 2)
$$

Also by the same lemma, $x_{k_{1}+2}-y_{k_{1}+2}=0-y_{k_{1}+2}=2$ or 3 , which is impossible. Hence $y_{1}=2$, and the same proof shows that $y_{2}=\cdots=y_{k_{1}}=$ 2. Therefore

$$
\mu_{n_{2}}\left(s_{n_{2}}\right)=\left(\frac{3}{8}\right)^{n_{1}} \mu_{k_{2}}\left(\bar{s}_{k_{2}}\right)
$$

which satisfies (4.2) by (4.3). Suppose (4.2) is true for $l-1$ where l is odd. By the same argument as the case $l=2$, we have $y_{i}=2$ for all $n_{l-1}+1 \leq$ $j \leq n_{l}$. Hence

$$
\mu_{n_{l}}\left(s_{n_{l}}\right)=\mu_{n_{l-1}}\left(s_{n_{l-1}}\right)\left(\frac{3}{8}\right)^{k_{l}}
$$

and

$$
\mu_{n_{l}+1}\left(s_{n_{l}+1}\right)=\mu_{n_{l-1}}\left(s_{n_{l-1}}\right)\left(\frac{3}{8}\right)^{k_{l}} \mu_{k_{l}+1}\left(\bar{s}_{k_{l}+1}\right)
$$

This proves the estimate in (4.2).
Theorem 4.6. Let μ and $\underline{\alpha}$, $\tilde{\alpha}$ be defined as before. Then for any $\alpha \in$ $(\underline{\alpha}, \tilde{\alpha})$, there exists $s \in(0, l)$ such that $\alpha(s)=\alpha$.

Proof. Recall that $\underline{\alpha}=\frac{3 \log 2}{\log 3}-1, \tilde{\alpha}=\frac{3 \log 2}{\log 3}-\frac{\log b}{2 \log 3}$. Then for $\alpha \in(\underline{\alpha}, \tilde{\alpha})$ we can write $\alpha=\theta \underline{\alpha}+(1-\theta) \tilde{\alpha}$ for some $0<\theta<1$. Let

$$
k_{j}= \begin{cases}2 j & \text { if } j \text { is odd } \\ 2\left[\frac{j(1-\theta)}{\theta}\right] & \text { if } j \text { is even. }\end{cases}
$$

Let $s=\sum_{j=1}^{\infty} 3^{-j} x_{j}$ be the form as in Lemma 4.5 with k_{j} so defined. Then

$$
\lim _{l \rightarrow \infty} \frac{o_{l}}{n_{l}}=\theta, \quad \lim _{\ell \rightarrow \infty} \frac{\ell}{n_{l}}=0, \quad \text { and } \quad \lim _{l \rightarrow \infty} \frac{n_{l-1}}{n_{l}}=1
$$

By (4.2) and a direct calculation we have

$$
\alpha(s)=\lim _{n \rightarrow \infty}\left|\frac{\log \mu_{n}\left(s_{n}\right)}{n \log 3}\right|=\alpha
$$

REFERENCES

1. R. Brualdi, "Introductory Combinatorics," North-Holland, Amsterdam, 1977.
2. R. Cawley and R. Mauldin, Multifractal decompositions of Maran Fractals, Adv. Math. 92 (1992), 196-236.
3. K. Falconer, "Techniques in Fractal Geometry," Wiley, New York, 1997.
4. A. Fan, K. S. Lau, and S. M. Ngai, Iterated function systems with overlaps, Asian J. Math., to appear.
5. T. Hu, The local dimensions of the Bernoulli convolution associated with the golden number, Trans. Amer. Math. Soc. 349 (1997), 2917-2940.
6. K. S. Lau and S. M. Ngai, Multifractal measure and a weak separation condidtion, Adv. Math. 141 (1999), 45-96.
7. K. S. Lau and S. Ngai, Second order self-similar identities, Indiana Univ. Math. J. 49 (2000), 925-972.
8. R. Kenyon, Projecting the one-dimensional Sierpinski Gasket, Israel J. Math 97 (1997), 221-238.
9. M. Keane, M. Smorodinsky, and B. Solomyak, Morplology of γ-expansions with deleted digits, Trans. Amer. Math. Soc. 347 (1995), 955-966.
10. M. Pollicott and K. Simon, The Hausdorff dimension of λ-expansions with deleted digits, Trans. Amer. Math. Soc. 347 (1995), 967-983.
11. H. Rao and Z. Y. Wen, Some studies of class of self-similar fractals with overlap structure, Adv. Appl. Math. 20 (1998), 50-72.

[^0]: ${ }^{1}$ Research partially supported by a direct grant from CUHK.
 ${ }^{2}$ Research supported by a RGC grant from HK and the Institute of Galilee, Univ. Paris XIII.

