Multifractal Structure of Convolution of the Cantor Measure

Tian-You Hu¹

Department of Mathematics, University of Wisconsin, Green Bay, Wisconsin 54311; and Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong, China E-mail address: hut@uwgb.edu

and

Ka-Sing Lau²

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China E-mail address: kslau@math.cuhk.edu.hk

Received May 15, 1998; accepted July 23, 1998; published online May 17, 2001

The multifractal structure of measures generated by iterated function systems (IFS) with overlaps is, to a large extend, unknown. In this paper we study the local dimension of the *m*-time convolution of the standard Cantor measure μ . By using some combinatoric techniques, we show that the set *E* of attainable local dimensions of μ contains an isolated point. This is rather surprising because when the IFS satisfies the open set condition, the set *E* is an interval. The result implies that the multifractal formalism fails without the open set condition. © 2001 Academic Press

Key Words: Cantor measure; convolution; local dimension; multifractal; multiple representation; probability.

¹Research partially supported by a direct grant from CUHK.

 $^2 \text{Research}$ supported by a RGC grant from HK and the Institute of Galilee, Univ. Paris XIII.

HU AND LAU

1. INTRODUCTION

Let μ be a probability measure on \mathbb{R} . For $s \in \text{supp } \mu$, we define the local dimension $\alpha(s)$ of μ at *s* by

$$\alpha(s) = \lim_{h \to 0^+} \frac{\log \mu(B_h(s))}{\log h},\tag{1.1}$$

and let $\overline{\alpha}(s)$ and $\underline{\alpha}(s)$ denote the upper and lower dimension by taking the upper and lower limits. An important consideration in fractal geometry is the multifractal structure of a measure μ generated by an iterated function system (IFS), such as the local dimension spectrum $f(\alpha) = \dim_H K_{\alpha}$ where $K_{\alpha} = \{s \in \text{supp } \mu: \alpha(s) = \alpha\}$ and the global L^q -scaling spectrum $\tau(q)$. These two classes of spectra are formally governed by the "multifractal formalism" and there is a large amount of literature intended to justify this relationship rigorously (see, for example, [2, 3, 6] and the references therein). The situation is well understood when the IFS satisfies the open set condition, but without that condition very little is known.

Let ν be the standard Cantor measure; then ν can be considered to be generated by the two maps $S_i(x) = \frac{1}{3}x + \frac{2}{3}i$, i = 0, 1 with weight $\frac{1}{2}$ on each S_i . Its *m*th convolution $\mu = \nu * \cdots * \nu$ is generated by

$$S_i(x) = \frac{1}{3}x + \frac{2}{3}i$$
 with weights $2^{-m}\binom{m}{i}$, $i = 0, 1, ..., m$.

It is well known that ν has only one local dimension, namely, $\log 2/\log 3$. For $\mu = \nu * \nu$, the IFS $\{S_i\}_{i=0}^2$ satisfies the open set condition; there is an explicit formula for the L^q -scaling spectrum $\tau(q)$ and the local dimension spectrum $f(\alpha)$ can be obtained by the multifractal formalism $(f(\alpha)$ equals the Legendre transformation (concave conjugate) of $\tau(q)$). For the *m*-time convolution the IFS $\{S_i\}_{i=0}^m$ does not satisfy the open set condition. In [4], Fan, Lau, and Ngai had made an initial investigation on the multifractal structure of such measure. They provided an algorithm to calculate the L^q -scaling spectrum $\tau(q)$ for q positive integers. By using the multifractal formalism, they obtained some approximation of $f(\alpha)$ for the α corresponding to $\tau'(q)$, q > 0. However, nothing is known for the rest of the $f(\alpha)$.

Let $E = \{\alpha: \alpha(s) = \alpha \text{ for some } s \in \text{supp } \mu\}$ be the set of attainable local dimensions. In this paper we show that

THEOREM 1.1. Let μ be the mth convolution of the Cantor measure $(m \ge 3)$. Then $\overline{\alpha} = \sup\{\overline{\alpha}(s): s \in \operatorname{supp} \mu\} = \frac{m \log 2}{\log 3}$ is an isolated point of E.

For the case m = 3 we have a more precise result.

THEOREM 1.2. Let μ be the three-time convolution of the Cantor measure. Then

(i)
$$\underline{\alpha} = \inf{\{\underline{\alpha}(s): s \in \operatorname{supp} \mu\}} = \frac{3\log 2}{\log 3} - 1 \approx 0.89278; \overline{\alpha} = \sup{\{\overline{\alpha}(s): s \in \operatorname{supp} \mu\}} = \frac{3\log 2}{\log 3} \approx 1.89278.$$

(ii) $E = [\underline{\alpha}, \tilde{\alpha}] \cup \{\overline{\alpha}\}$ with $\tilde{\alpha} = \frac{3\log 2}{\log 3} - \frac{\log b}{2\log 3} \approx 1.1335$ where $b = \frac{7+\sqrt{13}}{2}$.

In order for the multifractal formalism to hold, $f(\alpha)$ must be a concave function and the domain is an interval; i.e., the set of local dimensions of α forms an interval. This is true for all self-similar measures (actually more general) generated by IFS satisfying the open set condition [2, 6]. The above conclusion (ii) implies that the multifractal formalism fails for the convolution of the *m*-time convolution ($m \ge 3$) of the Cantor measure μ at least at $\overline{\alpha}$. Nevertheless, the formalism may still hold excluding $\overline{\alpha}$.

The proof of the theorems is combinatoric; it depends on some careful counting of the multiple representations of $s = \sum_{j=1}^{\infty} 3^{-j} x_j, x_j = 0, ..., m$, and the associated probability. We remark that there are recent investigations of the tenary expansions and other λ -expansions in connection with the fractal structure of the underlying sets [8–11].

In Section 2 we will give some preliminaries and prove some basic lemmas for counting. In Section 3 we prove Theorem 1.1 among the other results (Theorem 3.2, Theorem 3.6). In Section 4 we calculate the precise local dimensions and $\tilde{\alpha}$ for m = 3 as stated in Theorem 1.2.

2. THE BASIC LEMMAS

Let ν be the standard Cantor measure and let $\mu = \nu * \cdots * \nu$ (*m*-times). Note that μ can be obtained in the following way: Let X be a random variable taking values $\{0, 1, \dots, m\}$ with probability

$$p_i = P(X = i) = \frac{1}{2^m} \binom{m}{i}$$

and let $\{X_n\}_{n=1}^{\infty}$ be a sequence of independent random variables with the same distribution as X. Let $S = \sum_{j=1}^{\infty} 3^{-j} X_j$. Then the range of S is $[0, \frac{m}{2}]$. Let $S_n = \sum_{j=1}^n 3^{-j} X_j$; then S_n takes values $s_n \in \{3^{-n}i: i = 0, 1, \dots, m(3^n - 1)/2\}$. Let μ_n and μ be the distribution measure of S_n and S, respectively.

LEMMA 2.1. Suppose $m \ge 2$; then for any two consecutive $s_n = 3^{-n}i$, $s'_n = 3^{-n}(i-1)$, we have

$$\frac{1}{(n+1)\theta} \leq \frac{\mu_n(s'_n)}{\mu_n(s_n)} \leq (n+1)\theta,$$

where

$$\theta = \binom{m}{\left[\frac{m+1}{2}\right]} = \max_{1 \le i \le m} p_i / \min_{1 \le i \le m} p_i.$$

Proof. It is clear that the lemma is true for n = 1. Suppose it is true for n = k. Consider n = k + 1; then there is an integer r such that $s_{k+1} = \sum_{j=1}^{k+1} 3^{-j} x_j = 3^{-k} r + 3^{-(k+1)} x_{k+1}$. We can write

$$s_{k+1} = 3^{-k}(r-j) + 3^{-(k+1)}(x_{k+1}+3j),$$

where $r - j \ge 0$ and $0 \le x_{k+1} + 3j \le m$. Denote this set of j by J_1 . It follows that

$$\mu_{k+1}(s_{k+1}) = \sum_{j \in J_1} \mu_k (3^{-k}(r-j)) P(X = x_{k+1} + 3j).$$

Similarly the preceding value $s'_{k+1} = s_{k+1} - 3^{-(k+1)}$ satisfies

$$\mu_{k+1}(s'_{k+1}) = \sum_{j \in J_2} \mu_k (3^{-k}(r-j)) P(X = (x_{k+1}-1)+3j),$$

where J_2 is the set of j such that $0 \le x_{k+1} - 1 + 3j \le m$. Note that

$$j \in J_l$$
 if and only if $\frac{-x_{k+1} + \epsilon_l}{3} \le j \le \frac{m - x_{k+1} + \epsilon_l}{3}$,

where $\epsilon_1 = 0$ and $\epsilon_2 = 1$, l = 1, 2. There are three possibilities: (a) $J_1 \subset J_2$, (b) $J_2 \subset J_1$, and (c) $J_1 = J_2$. In case (a), $j' = (m - x_{k+1} + 1)/3$ is the only integer contained in $J_2 \setminus J_1$ and $P(X = (x_{k+1} - 1) + 3j') = P(X = m) = \min_{0 \le i \le m} p_i$. Then

$$\frac{\mu_{k+1}(s'_{k+1})}{\mu_{k+1}(s_{k+1})} \leq \frac{\left(\max_{0 \leq i \leq m} p_i\right) \sum_{j \in J_1} \mu_k (3^{-k}(r-j)) + \mu_k (3^{-k}(r-j')) P(X=m)}{\left(\min_{0 \leq i \leq m} p_i\right) \sum_{j \in J_1} \mu_k (3^{-k}(r-j))}$$
$$= \theta + \frac{\mu_k (3^{-k}(r-j'))}{\sum_{j \in J_1} \mu_k (3^{-k}(r-j))}$$
$$\leq \theta + \frac{\mu_k (3^{-k}(r-j'))}{\mu_k (3^{-k}(r-(j'-1)))}$$
$$\leq \theta + k\theta \qquad \text{(by induction)}$$
$$= (k+1)\theta.$$

A similar proof implies that the lower bound of the quotient is $\frac{1}{(k+1)\theta}$. Case (b) follows by the same argument and case (c) is trivial.

PROPOSITION 2.2. Let $m \ge 2$; then

$$\alpha(s) = \lim_{n \to \infty} \left| \frac{\log \mu_n(s_n)}{n \log 3} \right|,$$

provided that the limit exists. Otherwise we can replace $\alpha(s)$ by $\overline{\alpha}(s)$ and $\underline{\alpha}(s)$ and consider the upper and the lower limits.

Proof. By definition it is clear that

$$\alpha(s) = \lim_{n \to \infty} \left| \frac{\log \mu(B_{3^{-n}}(s))}{n \log 3} \right|.$$

Also it is easy to prove that

$$\mu(B_{3^{-n}}(s)) \le \mu_n(B_{r3^{-n}}(s)) \le \mu(B_{2r3^{-n}}(s))$$

for $r = 1 + \frac{m}{2}$ and $B_{r3^{-n}}(s)$ contains at most [2r] consecutive s_n ([x] is the greatest integer $\leq x$). The proposition hence follows from the lemma.

It is clear that if $m \ge 3$, then the series representation $s = \sum_{j=1}^{\infty} 3^{-j} x_j$ is not unique. In the following we will prove a key lemma concerning the multiple representations of s. It will be used throughout the paper.

PROPOSITION 2.3. Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j$, $s' = \sum_{j=1}^{\infty} 3^{-j} x'_j$, and $s - s' = \sum_{j=1}^{\infty} 3^{-j} y_i$.

(i) If $s_n = s'_n$, then $x_n \equiv x'_n \pmod{3}$. If, further, we assume that $|y_j| \le 3$ for all *j*, then (y_1, \ldots, y_n) can be decomposed as segments of the forms

 $(0, 0, \dots, 0), \pm (-1, 3)$ and $\pm (-1, 2, \dots, 2, 3).$ (2.1)

(ii) Conversely if $(y_1, \ldots, y_n, \ldots)$ can be decomposed as segments as in (2.1) or $\pm (-1, 2, 2, \ldots)$, then s = s'.

Proof. To prove the first statement in (i), we multiply 3^n to $s_n - s'_n = 0$. It follows that

$$3^{n}(x_{1} - x_{1}') + \dots + 3(x_{n-1} - x_{n-1}') + (x_{n} - x_{n}') = 0$$

and hence $x_n \equiv x'_n \pmod{3}$. For the second statement in (i), we note that the last non-zero term of y_1, \ldots, y_n must be congruent to 0 module 3. Since $|y_j| \leq 3$, we can assume without loss of generality that $y_n = 3$. Hence by rewriting $s_n = s'_n$ as

$$\sum_{j=1}^{n-2} 3^{-j} y_j + 3^{-(n-1)} (y_{n-1} + 1) = 0, \qquad (2.2)$$

we see that $y_{n-1} + 1 \equiv 0 \pmod{3}$. Since $|y_j| \leq 3$, either $y_{n-1} = -1$ or 2. If $y_{n-1} = -1$, then $(y_{n-1}, y_n) = (-1, 3)$ as asserted. We repeat the same argument to $\sum_{j=1}^{n-2} 3^{-j} y_j = 0$. If $y_{n-1} = 2$, then we can write (2.2) as $\sum_{j=1}^{n-2} 3^{-j} y_j + 3^{-(n-2)} = 0$ so that

$$\sum_{j=1}^{n-3} 3^{-j} y_j + 3^{-(n-2)} (y_{n-2} + 1) = 0.$$

This is the same form as (2.2) and the process can be repeated. The proof for (ii) is trivial.

We conclude this section by introducing some notations. For $s = \sum_{j=1}^{\infty} 3^{-j} x_j$, we write the digits by the vector $\mathbf{x} = (x_1, x_2, ...)$ and let $\langle s \rangle$ be the equivalent class of the $\mathbf{x}' = (x'_1, x'_2, ...)$ such that $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$. Also we let

$$\langle s_n \rangle = \left\{ (x'_1, \ldots, x'_n) : s_n = \sum_{j=1}^n 3^{-j} x'_j \right\}.$$

3. THE EXTREME LOCAL DIMENSIONS

In this section, we assume that μ is the *m*th convolution of the Cantor measure, $m \ge 2$. Then μ is supported by $[0, \frac{m}{2}]$. Let

 $\overline{\alpha} = \sup\{\overline{\alpha}(s): s \in \operatorname{supp} \mu\}$ and $\underline{\alpha} = \inf\{\underline{\alpha}(s): s \in \operatorname{supp} \mu\}.$

PROPOSITION 3.1. For $m \ge 2$, $\overline{\alpha} = \frac{m \log 2}{\log 3}$ and the value is attained at s = 0 or $\frac{m}{2}$.

Proof. Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j \in [0, \frac{m}{2}]$. Then

$$\mu_n(s_n) \ge \prod_{j=1}^n P(X = x_j) \ge 2^{-mn}.$$

It follows from Proposition 2.2 that

$$\overline{\alpha}(s) = \overline{\lim_{n \to \infty}} \left| \frac{\log \mu_n(s_n)}{n \log 3} \right| \le \overline{\lim_{n \to \infty}} \left| \frac{\log 2^{-mn}}{n \log 3} \right|.$$

On the other hand consider s = 0 or $s = \frac{m}{2}$; they have unique digit representation (0, 0, ...) or (m, m, ...) respectively. By Proposition 2.2 and a direct calculation, it is clear that $\overline{\alpha}(s) = \frac{m \log 2}{\log 3}$.

Let $K(\alpha) = \{s \in \text{supp } \mu : \alpha(s) = \alpha\}$, i.e., the set of points s such that the local dimension of μ at s is α .

THEOREM 3.2. Let $m \ge 3$. Then

- (i) $K(\overline{\alpha}) = \{0, \frac{m}{2}\}.$
- (ii) $K(\alpha) = \phi$ for all $\alpha^* < \alpha < \overline{\alpha}$, where

$$\alpha^* = \begin{cases} \frac{m \log 2}{\log 3} - \frac{\log \binom{m}{m/2 - 1}}{\log 3}, & \text{if } m \text{ is even,} \\ \frac{m \log 2}{\log 3} - \frac{\log \binom{m}{m/2 - 1} + \log \binom{m}{(m+1)/2 - 2}}{2 \log 3}, & \text{if } m \text{ is odd.} \end{cases}$$

The unexpected part of the theorem is that there is no point the local dimension of μ is between α^* and $\overline{\alpha}$. Note that (ii) of the theorem is not true for m = 2 (see [4]). We need a few technical lemmas to prove the theorem. The main idea is that for any *s* other than 0 and $\frac{m}{2}$, we can find another representation with digits around the middle of $0, 1, \ldots, m$ so that *s* will associate with a heavier weight. The local dimension can be computed to be much smaller than $\overline{\alpha}$ and hence produces a gap there. The first one is a pre-lemma of Lemma 3.4.

LEMMA 3.3. Let $m \ge 3$ and let $s = \sum_{j=1}^{\infty} 3^{-j} x_j \in (0, \frac{m}{2})$. Then for any fixed $3 \le r \le m$, there exists k and another representation $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ such that $0 \le x'_j \le r - 1$ for all $j \ge k$.

Proof. We assume the contrary; let $q = \max\{x_j: j > 1\} \ge r$, $x_1 \ne q$ and there are infinitely many $x_j = q$. We can use the following procedure repeatedly to reduce the size of q until $q \le r - 1$.

(i) There exists i_0 such that $x_j = q$ for all $j > i_0$ and $x_{i_0} < q$. Let $x'_{i_0} = x_{i_0} + 1$, $x'_j = x_j - 2$ $\forall j > i_0$, and $x'_j = x_j$ $\forall j < i_0$.

Then by Proposition 2.3(ii), $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ and $\max_{j>i_0} \{x'_j\} = q - 2$.

(ii) If $x_j < q$ for infinitely many *j*, we can assume without loss of generality that $x_1 < q - 1$ (this condition will appear in the following x'_n in the second iteration) and let *n* be the smallest integer such that $x_n = q$. Let i_0 be the largest integer less than *n* such that $x_{i_0} < q - 1$. Let

 $x'_{i_0} = x_{i_0} + 1$, $x'_n = x_n - 3$, $x'_j = x_j - 2$ for $i_0 < j \le n - 1$, and $x'_j = x_j$ otherwise. Then $s = \sum_{n=1}^{\infty} 3^{-j} x'_j$ by Proposition 2.3(ii) and $0 \le x'_j \le q - 1$, for $1 \le j \le n$. We will repeat this procedure to have all $x_j \le q - 1$.

LEMMA 3.4. Suppose that $m \ge 3$ and $0 \le r \le m-2$. Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j \in (0, \frac{m}{2})$; then there exists k and another representation $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ such that $x'_j \in \{r, r+1, r+2\}$ for all $j \ge k$.

Proof. By Lemma 3.3 (apply to r + 3) we can assume without loss of generality that $0 \le x_j \le r + 2$ for all j. If r = 0, the lemma is automatic. Hence we assume that r > 0; we show that we can replace $x_j = 0$ by $1 \le x'_j \le r + 2$, where $r \ge 1$. Assume that there exist some $x_n = 0$. We need to deal with two cases.

(i) If
$$x_j = 0$$
 or 1 for all j , let $j_0 = \min\{j: x_j = 1\}$. Define
 $x'_j = 0$ for $j \le j_0$, $x'_j = x_j + 2$ for $j > j_0$.

Then $2 \le x'_j \le 3 \le r+2$ for $j > j_0$ and $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ by Proposition 2.3.

(ii) Otherwise consider a segment of the form $(x_i, x_{i+1}, ..., x_n)$ with $x_i > 1, x_{i+1}, ..., x_{n-1} = 0$ or 1 and $x_n = 0$. We define

 $x'_i = x_i - 1$, $x'_n = x_n + 3$, and $x'_j = x_j + 2$, $i < j \le n - 1$.

Then $s = \sum_{j=1}^{n} 3^{-j} x'_{j}$ and $x'_{j} > 0$ for $i \le j \le n$. We repeat this process until all the 0 after x_{n} are replaced.

After we have $1 \le x'_j \le r+2$ we can repeat the same process until we obtain a representation $s = \sum_{j=1}^{\infty} 3^{-j} x''_j$ with $r \le x''_j \le r+2$.

LEMMA 3.5. Suppose $m \ge 3$ and $0 \le r \le m-2$. Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j \in (0, \frac{m}{2})$; then there exists k and another representation $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ satisfying

(i) $x'_i \in \{r, r+1, r+2, r+3\}$ for all $j \ge k$.

(ii) For any $j \ge k$, $(x'_j, x'_{j+1}) \ne (r, r), (r, r+3), (r+3, r), (r+3, r+3).$

Consequently if n' is the total number of digits x'_j such that $x'_j = r + 1$ or r + 2, then $n' \ge (n - k)/2$.

Proof. By Lemma 3.4, we can assume that $x_j \in \{r, r+1, r+2\}$. For convenience we also let r = 0 so that $x_j = 0, 1$ or 2. We need to replace the segments $(x_j, \ldots, x_{j+k}) = (0, \ldots, 0), k \ge 1$, to satisfy conditions (i) and (ii).

Without loss of generality we assume that $x_1 \neq 0$. Let $(x_{i_0}, \ldots, x_{i_0+k})$ be the first segment of 0 with x_{i_0-1} and $x_{i_0+k+1} \geq 1$. If $(x_1, x_2, \ldots, x_{i_0-1}) = (1, 0, 1, 0, \ldots, 1, 0, 1)$, then let $j_0 = 1$. Otherwise $(x_1, x_2, \ldots, x_{i_0-1})$ contains a 2 or (1, 1); we let

$$j_0 = \max\{j < i_0: x_j = 2 \text{ or } (x_{j-1}, x_j) = (1, 1)\}.$$

(Note that for $j_0 < j < i_0$, the digits x_j are alternative 0 and 1.) We define

$$x'_{j_0} = x_{j_0} - 1, \quad x'_j = x_j + 2 \quad \text{for } j_0 < j \le i_0 + k - 1, \quad x'_{i_0 + k} = 3$$

and $x'_j = x_j$ otherwise. Then $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ and for $1 \le j \le i_0 + k$, x'_j satisfy conditions (i) and (ii) of the lemma. We repeat this argument for $j > i_0 + k$ and (i) and (ii) of the lemma will follow. The second part is clear.

Proof of Theorem 3.2. If *m* is even, then by Lemma 3.4, there exists *k* and another series representation $s = \sum_{j=1}^{\infty} 3^{-j} x'_j$ such that $x'_j \in \{\frac{m}{2} - 1, \frac{m}{2}, \frac{m}{2} + 1\}$ for all $j \ge k$. It follows that

$$\mu_n(s_n) \ge \prod_{j=1}^n P(X = x'_j) \ge C\left(2^{-m}\binom{m}{\frac{m}{2} - 1}\right)^n$$

(C depends on k) so that

$$\overline{\alpha}(s) = \overline{\lim_{n \to \infty}} \Big| \frac{\log \mu_n(s_n)}{n \log 3} \Big| \le \alpha^*.$$

If *m* is odd, we take $x'_{j} \in \{r, r+1, r+2, r+3\}$ where $r = \frac{m+1}{2} - 2$; then by Lemma 3.5,

$$\mu_n(s_n) \ge \prod_{j=1}^n P(X = x'_j) \ge C \left(2^{-m} \binom{m}{\frac{m+1}{2}} \right)^{n/2} \left(2^{-m} \binom{m}{\frac{m+1}{2} - 2} \right)^{n/2}$$

and $\overline{\alpha}(s) \leq \alpha^*$. Now (i) and (ii) follow from this and Proposition 3.1.

Our second theorem is concerned with the smallest local dimension $\underline{\alpha}$. We can prove it only for the case $m \leq 4$.

THEOREM 3.6. Let $2 \le m \le 4$. Then

$$\underline{\alpha} = \begin{cases} \frac{3\log 2}{\log 3} - 1 \approx 0.89278 & \text{if } m = 3 \text{ or } 4, \\ \frac{\log 2}{\log 3} \approx 0.63093 & \text{if } m = 2. \end{cases}$$

Moreover the infimum is attained at $s = \sum_{j=1}^{\infty} 3^{-j} = \frac{1}{2}$ if m = 2; $s = \sum_{j=1}^{\infty} 3^{-j} 2 = 1$ if m = 4; and $s = \sum_{j=1}^{\infty} 3^{-j} x_j$, $x_j = 1$ or 2 if m = 3.

Proof. We will prove the theorem for m = 4. The case for m = 3 and m = 2 can be handled in the same way. Let $t = \sum_{j=1}^{\infty} 3^{-j}2$. We claim that $\langle t_n \rangle = \{(2, \ldots, 2)\}$. Indeed for $(x_1, \ldots, x_n) \in \langle t_n \rangle$, by Proposition 2.3(i), $x_n - t_n \equiv 0 \pmod{3}$; hence $x_n = 2$ also. Thus $(x_1, \ldots, x_{n-1}) \in \langle t_{n-1} \rangle$ and a simple induction implies that $x_i = 2$, $1 \le i \le n$. Hence

$$\mu_n(t_n) = \left(2^{-4} \binom{4}{2}\right)^n = \left(\frac{6}{2^4}\right)^n$$

and

$$\underline{\alpha}(t) = \lim_{n \to \infty} \left| \frac{\log \mu_n(t_n)}{n \log 3} \right| = \frac{3 \log 2}{\log 3} - 1 = \underline{\alpha}.$$

It remains to show that for any $s = \sum_{j=1}^{\infty} 3^{-j} x_j$, $\mu_n(s_n) \le \mu_n(t_n)$ so that $\underline{\alpha}(s) \ge \underline{\alpha}$. We will prove this by induction. For the case n + 1, we divide it

into three cases:

(i) If $x_{n+1} = 2$, then

$$\mu_{n+1}(s_{n+1}) = \mu_n(s_n)P(X=2) \le \left(\frac{6}{2^4}\right)^n \left(\frac{6}{2^4}\right) = \mu_{n+1}(t_{n+1}).$$

(ii) If $x_{n+1} = 0$ (or 3), then by Proposition 2.3(i), for any other representation $s_{n+1} = \sum_{j=1}^{n+1} 3^{-j} x'_j$, x'_{n+1} has two choices: 0 or 3. Let $s_n^{(1)}$, $s_n^{(2)}$ be the corresponding *n*-sum of the two choices; then

$$s_{n+1} = s_n^{(1)} + 3^{-(n+1)}0 = s_n^{(2)} + 3^{-(n+1)}3.$$

By the induction hypothesis we have

$$\mu_{n+1}(s_{n+1}) = \mu_n(s_n^{(1)})P(X=0) + \mu_n(s_n^{(2)})P(X=3)$$

= $\mu_n(s_n^{(1)})\left(\frac{1}{2^4}\right) + \mu_n(s_n^{(2)})\left(\frac{4}{2^4}\right)$
 $\leq \mu_n(t_n)\left(\frac{5}{2^4}\right) = \left(\frac{6}{2^4}\right)^n\left(\frac{5}{2^4}\right)$
 $< \left(\frac{6}{2^4}\right)^{n+1} = \mu_{n+1}(t_{n+1}).$

(iii) If $x_{n+1} = 1$ (or 4), the proof is the same as (ii) since P(X = 0) = P(X = 4) and P(X = 1) = P(X = 3).

4. THE EXACT RANGE OF LOCAL DIMENSION: m = 3

In this section we only consider that μ is the three time convolution of the standard Cantor measure. In last section we showed that there is no $s \in \operatorname{supp} \mu$ with local dimension $\alpha \in (\alpha^*, \overline{\alpha})$ where $\alpha^* = \frac{3\log 2}{\log 3} - \frac{1}{2}$ and $\overline{\alpha} = \frac{3\log 2}{\log 3}$. However, such α^* is not the best possible value. We will sharpen this result in the sequel.

LEMMA 4.1. Let $0 < \beta_1, \beta_2$ be fixed and let $\beta_{n+1} = 4\beta_n + \sum_{j=1}^{n-1} 3^{n-j}\beta_j$. Then

(i) $\beta_{n+1} = 7\beta_n - 9\beta_{n-1}$.

(ii) $\beta_{n+1} = cb^n + c'b'^n$ where $b, b' = \frac{7\pm\sqrt{13}}{2}$ ($\approx 5.3, 1.7$, respectively) are roots of $x^2 - 7x + 9 = 0$, and c and c' depend on β_1 and β_2 .

Proof. By definition,

$$\beta_{n+1} = 4\beta_n + 3\left(\beta_{n-1} + \sum_{j=1}^{n-2} 3^{n-1-j}\beta_j\right) = 4\beta_n + 3(\beta_n - 3\beta_{n-1}).$$

So (i) follows. It is easy to show that $\{\beta_n\}$ is an increasing sequence and $b = \lim_{n \to \infty} \beta_{n+1}/\beta_n$ satisfies $b^2 - 7b + 9 = 0$. The expression of β_n in (ii) follows from [1, Chap. 6].

We remark that c, c' are uniquely determinined by the two equations $c + c' = \beta_1, cb + c'b' = \beta_2$; i.e.,

$$c = \frac{\beta_2 - \beta_1 b'}{b - b'}$$
 and $c' = \frac{\beta_1 b - \beta_2}{b - b'}$.

In the later part we will have $\beta_2 \ge 4\beta_1$ so that *c* is always positive, but *c'* can be positive or negative. If c' > 0, then $\beta_{n+1} > cb^n$. If c' < 0, then $\beta_{n+1} \ge (c+c')b^n = \beta_1 b^n$.

The calculation in this section depends very much on the following special *t* and its variations.

LEMMA 4.2. Let
$$t = \sum_{j=1}^{\infty} 3^{-j} x_j = \frac{1}{8}$$
 with $\mathbf{x} = (0, 1, 0, 1, ...)$. Then
 $\mu_{2n-1}(t_{2n-1}) = \frac{\beta_n}{8^{2n-1}}, \qquad \mu_{2n}(t_{2n}) = \frac{3\beta_n}{8^{2n}},$

where β_n is defined as in Lemma 4.1 with $\beta_1 = 1, \beta_2 = 4$. In this case $\beta_n \ge 0.63b^{n-1}$.

Proof. For n = 1, $\mu_1(t_1) = \frac{1}{8} = \beta_1/8$. For n = 2, by Proposition 2.3(i) we see that t_3 has two representations: $\langle t_3 \rangle = \{(0, 1, 0), (0, 0, 3)\}$. Therefore

$$\mu_3(t_3) = p_0 p_1 p_0 + p_0 p_0 p_3 = \frac{4}{8^3} = \frac{\beta_2}{8^3}.$$

For *n* we observe that for $(x'_1, \ldots, x'_{2n-1}) \in \langle t_{2n-1} \rangle$, Proposition 2.3(i) implies that $0 - x'_{2n-1} \equiv 0 \pmod{3}$. We have the following two cases for x'_{2n-1} .

(a) $x'_{2n-1} = 3$: By Proposition 2.3(ii) we can find an *i* such that

$$(x_i - x'_i, \dots, x_{2n-1} - x'_{2n-1}) = (1, -2, \dots, -2, -3).$$

Note that $x_i - x'_i = 1 - x'_i = 1$ implies that $x_i = 1, x'_i = 0$; i.e., *i* is an even integer and hence

$$(x'_i, \ldots, x'_{2n-1}) = (0, 2, 3, 2, 3, \ldots, 2, 3, 3).$$

Let i = 2k; then the digit 2 occurs (n - k - 1) times, 3 occurs (n - k) times, and 0 occurs once.

(b) $x'_{2n-1} = 0$: By Proposition 2.3(ii), the preceding term x'_{2n-2} must be 1 so that $t_{2n-3} = t'_{2n-3}$.

We see that t_{2n-1} has only two representations as in (a), (b); hence

$$\mu_{2n-1}(t_{2n-1}) = \mu_{2n-3}(t_{2n-3})p_1p_0 + \sum_{k=1}^{n-1} \mu_{2k-1}(t_{2k-1})p_0p_2^{n-k-1}p_3^{n-k}$$
$$= \frac{3\beta_{n-1}}{8^{2n-1}} + \sum_{k=1}^{n-1} 3^{(n-k-1)}\frac{\beta_k}{8^{2n-1}} = \frac{\beta_n}{8^{2n-1}}.$$

This completes the induction for the first equality. For the even case we observe that $t_{2n} = t_{2n-1} + 3^{-2n}$ is the only representation for s_{2n} . This implies that

$$\mu_{2n}(t_{2n}) = \mu_{2n-1}(t_{2n-1})\frac{3}{8} = \frac{3\beta_n}{8^{2n}}$$

The last inequality follows from the remark after Lemma 4.1 with $c \ge 0.63$.

COROLLARY 4.3. Let $\mathbf{x}_t = (0, 1, 0, 1, ...)$ and for $\mathbf{x} = (x_1, x_2, ...)$ let $s = \sum_{j=1}^{\infty} 3^{-j} x_j$

(i) If
$$\mathbf{x} = (2, \mathbf{x}_{l})$$
, then

$$\frac{6b^{n-1}}{8^{2n}} \le \mu_{2n}(s_{2n}) \le \frac{7b^{n-1}}{8^{2n}}.$$
(ii) If $\mathbf{x} = (2, 2, 1, \dots, n)$

(ii) If
$$\mathbf{x} = (2, 3, 1, \mathbf{x}_{t})$$
, then

$$\frac{4b^{n-1}}{8^{2n}} \le \mu_{2n}(s_{2n}) \le \frac{7b^{n-1}}{8^{2n}}.$$
(iii) If $\mathbf{x} = (1, 1, \mathbf{x}_{t}), (2, 1, \mathbf{x}_{t}), (1, 2, \mathbf{x}_{t}) \text{ or } (2, 2, \mathbf{x}_{t})$, then

$$\frac{2b^{n}}{8^{2n+1}} \le \mu_{2n+1}(s_{2n+1}) \le \frac{4b^{n}}{8^{2n+1}}.$$

Proof. (i) Consider $\mathbf{x} = (2, \mathbf{x}_t) = (2, 0, 1, 0, ...)$. s_2 has two representations, (2, 0) and (1, 3), so that

$$\mu_2(s_2) = \frac{3+3}{8^2} = \frac{6}{8^2} := \frac{\beta_1}{8^2}$$

 s_4 has five representations, (2, 0, 1, 0), (1, 3, 1, 0), (2, 0, 0, 3), (1, 3, 0, 3), (1, 2, 3, 3); hence

$$\mu_4(s_4) = \frac{9+9+3+3+9}{8^4} = \frac{33}{8^4} := \frac{\beta_2}{8^4}.$$

Now using the same argument as in Lemma 4.2, we have $\mu_{2n}(s_{2n}) = \beta_n/8^{2n}$, where $\beta_1 = 6$, $\beta_2 = 33$. We can calculate $c' \approx -0.33$, $c \approx 6.33$ as in Lemma 4.1. By the remark after Lemma 4.1, we have $6b^{n-1} \le \beta_n \le 7b^{n-1}$ and (i) follows.

(iii) The proof is similar. ■

THEOREM 4.4. Let $\tilde{\alpha} = \frac{3\log 2}{\log 3} - \frac{\log b}{2\log 3} \approx 1.1335$. Then $K(\alpha) = \phi$ for all $\tilde{\alpha} < \alpha < \overline{\alpha}$. Moreover the value $\tilde{\alpha}$ is attained at $t = \sum_{j=1}^{\infty} 3^{-i} x_j$ (i.e., $\alpha(t) = \tilde{\alpha}$) where $(x_1, x_2, \ldots) = (0, 1, 0, 1, \ldots)$.

REMARK. This improves Theorem 3.2 for m = 3 where $\alpha^* = \frac{3 \log 2}{\log 3} - \frac{1}{2} \approx 1.39278$.

Proof. Let $t = \sum_{j=1}^{\infty} 3^{-j} x_j$ where $(x_1, x_2, \ldots) = (0, 1, 0, 1, \ldots)$. That $\alpha(t) = \tilde{\alpha}$ is a direct consequence of Lemma 4.2. We claim that for any $s = \sum_{j=1}^{\infty} 3^{-j} x_j$ with $x_j = 0, 1, 2, 3$, there is a constant *c* depending on *s* such that

$$\mu_{2n}(s_{2n}) \ge \frac{cb^n}{8^{2n}} \quad \text{and} \quad \mu_{2n+1}(s_{2n+1}) \ge \frac{cb}{3} \frac{b^n}{8^{2n+1}}.$$
(4.1)

This will imply $K(\alpha) = \phi$ for $\tilde{\alpha} < \alpha < \overline{\alpha}$.

To prove the claim, we can assume, by Lemma 3.4, that $x_j = 0, 1$, or 2. For convenience we assume further that $x_1 = 1$ (or 2) and $c = \frac{1}{2}$ (otherwise, we can start from the first non-zero term and adjust the constant *c*). We will prove the statement by two inductive steps:

Step 1. We show that for $1 \le n \le n_0$,

$$\mu_{2n}(s_{2n}) \geq \frac{cb^n}{8^{2n}} \quad \Rightarrow \quad \mu_{2n+1}(s_{2n+1}) \geq \frac{cb}{3} \frac{b^n}{8^{2n+1}}.$$

It is straightforward to verify this for n = 1. Suppose it is true for n = k - 1 and consider n = k. If the final digit x_{2k+1} is 1 or 2, then

$$\mu_{2k+1}(s_{2k+1}) = \mu_{2k}(s_{2k})p_1 \ge \frac{cb^k}{8^{2k}}\frac{3}{8} \ge \frac{cb}{3}\frac{b^k}{8^{2k+1}}.$$

If the final digit $x_{2k} = 0$, then we run the digits 0 and 1 alternatively backward and stop at *i* until one of the following cases occurs:

- (i) $(x_1, \ldots, x_i, 2, 0, 1, \ldots, 0, 1, 0);$
- (ii) $(x_1, \ldots, x_i, 1, 0, 1, \ldots, 0, 1, 0)$, where $x_i \neq 0$;

(iii) $(x_1, \ldots, x_i, 0, \ldots, 0, 1, \ldots, 0, 1, 0)$ where $x_i \neq 0$ and there are at least two consecutive zeros starting from the (i + 1)th term.

In case (i) we see that *i* is odd. Write i = 2j + 1; then by Corollary 4.3(i) and induction,

$$\mu_{2k+1}(s_{2k+1}) \ge \mu_{2j+1}(s_{2j+1}) \frac{6b^{k-j-1}}{8^{2(k-j)}} > \frac{cb}{3} \frac{b^j}{8^{2j+1}} \frac{6b^{k-j-1}}{8^{2(k-j)}} > \frac{cb}{3} \frac{b^k}{8^{2k+1}}.$$

In case (ii), i = 2j + 1 for some *j*; we divide the digits into two segments (x_1, \ldots, x_{i-1}) and $(x_i, 1, 0, 1, \ldots, 1, 0)$. Then

$$\mu_{2k+1}(s_{2k+1}) \ge \mu_{2j}(s_{2j}) \frac{2b^{k-j}}{8^{2(k-j)+1}} \ge \frac{cb^j}{8^{2j}} \frac{2b^{k-j}}{8^{2(k-j)+1}} > \frac{cb}{3} \frac{b^k}{8^{2k+1}}$$

In (iii) we consider the case with $x_i = 1$ and only two consecutive zeros after x_i (for the case of more zeros or $x_i = 2$, the proof is the same). It is clear that *i* is odd. Write i = 2j + 1. There are at least two representations as follows. We divide the digits into two subcases (by parentheses) for calculation:

- (a) $(x_1, \ldots, x_{i-1}, 1, 0)(0, 1, 0, 1, 0, \ldots, 1, 0).$
- (b) $(x_1, \ldots, x_{i-1}, 0)(2, 3, 1, 0, 1, 0, \ldots, 1, 0).$

Using induction and Lemma 4.2 with $\beta_n \ge 0.63b^{n-1}$ as well as Corollary 4.3(ii) we have

$$\begin{split} \mu_{2k+1}(s_{2k+1}) &\geq \frac{cb^{j+1}}{8^{2(j+1)}} \frac{\beta_{k-j}}{8^{2k-2j-1}} + \frac{cb}{3} \frac{b^j}{8^{2j+1}} \frac{4b^{k-j-1}}{8^{2(k-j)}} \\ &\geq \frac{cb^k}{8^{2k+1}} \left(0.63 + \frac{4}{3} \right) > \frac{cb}{3} \frac{b^k}{8^{2k+1}}. \end{split}$$

This proves the claim of Step 1.

Step 2. To prove (4.1), assume that the statement is true for 2n and then use Step 1 to prove the case 2n + 1. Then follow by the same induction method as in Step 1 to prove the case 2(n + 1).

In the above we see that if $\mathbf{x} = (2, 2, ...)$ or (0, 1, 0, 1, ...), then the corresponding sum $s = \sum_{j=1}^{\infty} 3^{-j} x_j$ has the smallest local dimension $\underline{\alpha}$ and the second largest local dimension $\tilde{\alpha}$, respectively. We will show that $(\underline{\alpha}, \tilde{\alpha})$ is the essential range of the local dimension of μ , i.e., for $\alpha \in (\underline{\alpha}, \tilde{\alpha})$; by suitably arranging the above two patterns of \mathbf{x} , we can find an $s \in \text{supp } \mu$ such that $\alpha(s) = \alpha$.

We need a few notations. Let $\{k_j\}_{j=1}^{\infty}$ be a sequence of positive integers, let n_l be the *l*th partial sum of $\{k_j\}_{j=1}^{\infty}$, and e_l and o_l are the respective sums of the even and odd terms of $\{k_j\}_{j=1}^{l}$. Obviously $n_l = o_l + e_l$.

LEMMA 4.5. Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j$, where

$$\mathbf{x} = (\underbrace{2, \ldots, 2}_{k_1}, \underbrace{2, 0, 1, 0, \ldots, 1, 0}_{k_2}, \underbrace{2, \ldots, 2}_{k_3}, \underbrace{2, 0, 1, 0, \ldots, 1, 0}_{k_4}, \ldots).$$

Then there exists c, d > 0 such that

$$\frac{c^{[l/2]}3^{o_l}b^{e_l/2}}{8^{n_l}} \le \mu_{n_l}(s_{n_l}) \le \frac{d^{[l/2]}3^{o_l}b^{e_l/2}}{8^{n_l}}.$$
(4.2)

Proof. We can modify Corollary 4.3(i) for $\overline{s} = \sum_{j=1}^{\infty} 3^{-j} \overline{x}_j$ with $\overline{\mathbf{x}} = (2, 0, 1, 0, 1, ...)$ to find c, d > 0 such that

$$\frac{cb^{n/2}}{8^n} \le \mu_n(\bar{s}_n) \le \frac{db^{n/2}}{8^n}.$$
 (4.3)

We now use induction to prove (4.2). For l = 1, $\mu_{n_1}(s_{n_1}) = (\frac{3}{8})^{o_1}$ and the lemma is trivially true. For l = 2, suppose $(y_1, \ldots, y_{k_1}, y_{k_1+1}, \ldots, y_{k_1+k_2})$ is another representation of $s_{k_1+k_2}$ corresponding to $(x_1, \ldots, x_{k_1+k_2}) = (2, \ldots, 2, 2, 0, 1, \ldots, 1, 0)$. We first claim that $y_1 = 2$. Otherwise by Proposition 2.3, we necessarily have

$$(x_1 - y_1, \dots, x_{k_1+1} - y_{k_1+1}) = (-1, 2, \dots, 2).$$

Also by the same lemma, $x_{k_1+2} - y_{k_1+2} = 0 - y_{k_1+2} = 2$ or 3, which is impossible. Hence $y_1 = 2$, and the same proof shows that $y_2 = \cdots = y_{k_1} = 2$. Therefore

$$\mu_{n_2}(s_{n_2}) = \left(\frac{3}{8}\right)^{n_1} \mu_{k_2}(\bar{s}_{k_2}),$$

which satisfies (4.2) by (4.3). Suppose (4.2) is true for l - 1 where l is odd. By the same argument as the case l = 2, we have $y_i = 2$ for all $n_{l-1} + 1 \le j \le n_l$. Hence

$$\mu_{n_l}(s_{n_l}) = \mu_{n_{l-1}}(s_{n_{l-1}}) \left(\frac{3}{8}\right)^{k_l}$$

and

$$\mu_{n_{l}+1}(s_{n_{l}+1}) = \mu_{n_{l-1}}(s_{n_{l-1}}) \left(\frac{3}{8}\right)^{k_{l}} \mu_{k_{l}+1}(\overline{s}_{k_{l}+1}).$$

This proves the estimate in (4.2).

THEOREM 4.6. Let μ and $\underline{\alpha}$, $\tilde{\alpha}$ be defined as before. Then for any $\alpha \in (\underline{\alpha}, \tilde{\alpha})$, there exists $s \in (0, l)$ such that $\alpha(s) = \alpha$.

Proof. Recall that $\underline{\alpha} = \frac{3 \log 2}{\log 3} - 1$, $\tilde{\alpha} = \frac{3 \log 2}{\log 3} - \frac{\log b}{2 \log 3}$. Then for $\alpha \in (\underline{\alpha}, \tilde{\alpha})$ we can write $\alpha = \theta \underline{\alpha} + (1 - \theta) \tilde{\alpha}$ for some $0 < \theta < 1$. Let

$$k_j = \begin{cases} 2j & \text{if } j \text{ is odd} \\ 2\left[\frac{j(1-\theta)}{\theta}\right] & \text{if } j \text{ is even.} \end{cases}$$

Let $s = \sum_{j=1}^{\infty} 3^{-j} x_j$ be the form as in Lemma 4.5 with k_j so defined. Then

$$\lim_{l \to \infty} \frac{o_l}{n_l} = \theta, \qquad \lim_{\ell \to \infty} \frac{\ell}{n_l} = 0, \qquad \text{and} \qquad \lim_{l \to \infty} \frac{n_{l-1}}{n_l} = 1.$$

By (4.2) and a direct calculation we have

$$\alpha(s) = \lim_{n \to \infty} \left| \frac{\log \mu_n(s_n)}{n \log 3} \right| = \alpha.$$

REFERENCES

- 1. R. Brualdi, "Introductory Combinatorics," North-Holland, Amsterdam, 1977.
- R. Cawley and R. Mauldin, Multifractal decompositions of Maran Fractals, *Adv. Math.* 92 (1992), 196–236.
- 3. K. Falconer, "Techniques in Fractal Geometry," Wiley, New York, 1997.
- 4. A. Fan, K. S. Lau, and S. M. Ngai, Iterated function systems with overlaps, *Asian J. Math.*, to appear.
- T. Hu, The local dimensions of the Bernoulli convolution associated with the golden number, *Trans. Amer. Math. Soc.* 349 (1997), 2917–2940.
- K. S. Lau and S. M. Ngai, Multifractal measure and a weak separation condidtion, *Adv. Math.* 141 (1999), 45–96.
- K. S. Lau and S. Ngai, Second order self-similar identities, *Indiana Univ. Math. J.* 49 (2000), 925–972.
- R. Kenyon, Projecting the one-dimensional Sierpinski Gasket, Israel J. Math 97 (1997), 221–238.
- M. Keane, M. Smorodinsky, and B. Solomyak, Morplology of γ-expansions with deleted digits, *Trans. Amer. Math. Soc.* 347 (1995), 955–966.
- M. Pollicott and K. Simon, The Hausdorff dimension of λ-expansions with deleted digits, *Trans. Amer. Math. Soc.* 347 (1995), 967–983.
- H. Rao and Z. Y. Wen, Some studies of class of self-similar fractals with overlap structure, Adv. Appl. Math. 20 (1998), 50–72.