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1. INTRODUCTION

Let µ be a probability measure on �. For s ∈ suppµ, we define the local
dimension α�s� of µ at s by

α�s� = lim
h→0+

logµ�Bh�s��
logh

� (1.1)

and let α�s� and α�s� denote the upper and lower dimension by taking the
upper and lower limits. An important consideration in fractal geometry is
the multifractal structure of a measure µ generated by an iterated function
system (IFS), such as the local dimension spectrum f �α� = dimH Kα where
Kα = �s ∈ suppµ� α�s� = α	 and the global Lq-scaling spectrum τ�q�.
These two classes of spectra are formally governed by the “multifractal
formalism” and there is a large amount of literature intended to justify
this relationship rigorously (see, for example, [2, 3, 6] and the references
therein). The situation is well understood when the IFS satisfies the open
set condition, but without that condition very little is known.

Let ν be the standard Cantor measure; then ν can be considered to be
generated by the two maps Si�x� = 1

3x+ 2
3 i� i = 0� 1 with weight 1

2 on each
Si. Its mth convolution µ = ν ∗ · · · ∗ ν is generated by

Si�x� =
1
3
x+ 2

3
i with weights 2−m

(
m

i

)
� i = 0� 1� � � � �m�

It is well known that ν has only one local dimension, namely, log 2/ log 3.
For µ = ν ∗ ν, the IFS �Si	2i=0 satisfies the open set condition; there is
an explicit formula for the Lq-scaling spectrum τ�q� and the local dimen-
sion spectrum f �α� can be obtained by the multifractal formalism (f �α�
equals the Legendre transformation (concave conjugate) of τ�q�). For the
m-time convolution the IFS �Si	mi=0 does not satisfy the open set condi-
tion. In [4], Fan, Lau, and Ngai had made an initial investigation on the
multifractal structure of such measure. They provided an algorithm to cal-
culate the Lq-scaling spectrum τ�q� for q positive integers. By using the
multifractal formalism, they obtained some approximation of f �α� for the
α corresponding to τ′�q�� q > 0. However, nothing is known for the rest
of the f �α�.

Let E = �α� α�s� = α for some s ∈ suppµ	 be the set of attainable local
dimensions. In this paper we show that

Theorem 1.1. Let µ be the mth convolution of the Cantor measure
�m ≥ 3�. Then α = sup�α�s�� s ∈ suppµ	 = m log 2

log 3 is an isolated point
of E.
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For the case m = 3 we have a more precise result.

Theorem 1.2. Let µ be the three-time convolution of the Cantor measure.
Then

(i) α = inf�α�s�� s ∈ suppµ	 = 3 log 2
log 3 − 1 ≈ 0�89278; α =

sup�α�s�� s ∈ suppµ	 = 3 log 2
log 3 ≈ 1�89278.

(ii) E = �α� α̃� ∪ �α	 with α̃ = 3 log 2
log 3 − log b

2 log 3 ≈ 1�1335 where b =
7+√13

2 .

In order for the multifractal formalism to hold, f �α� must be a concave
function and the domain is an interval; i.e., the set of local dimensions
of α forms an interval. This is true for all self-similar measures (actually
more general) generated by IFS satisfying the open set condition [2, 6].
The above conclusion (ii) implies that the multifractal formalism fails for
the convolution of the m-time convolution �m ≥ 3� of the Cantor measure
µ at least at α. Nevertheless, the formalism may still hold excluding α.

The proof of the theorems is combinatoric; it depends on some careful
counting of the multiple representations of s = ∑∞j=1 3−jxj� xj = 0� � � � �m,
and the associated probability. We remark that there are recent investiga-
tions of the tenary expansions and other λ-expansions in connection with
the fractal structure of the underlying sets [8–11].

In Section 2 we will give some preliminaries and prove some basic lem-
mas for counting. In Section 3 we prove Theorem 1.1 among the other
results (Theorem 3.2, Theorem 3.6). In Section 4 we calculate the precise
local dimensions and α̃ for m = 3 as stated in Theorem 1.2.

2. THE BASIC LEMMAS

Let ν be the standard Cantor measure and let µ = ν ∗ · · · ∗ ν (m-times).
Note that µ can be obtained in the following way: Let X be a random
variable taking values �0� 1� � � � �m	 with probability

pi = P�X = i� =
1
2m

(
m

i

)
and let �Xn	∞n=1 be a sequence of independent random variables with the
same distribution as X. Let S =∑∞j=1 3−jXj . Then the range of S is �0� m2 �.
Let Sn =

∑n
j=1 3−jXj; then Sn takes values sn ∈

{
3−ni� i = 0� 1� � � � �m�3n −

1�/2}. Let µn and µ be the distribution measure of Sn and S, respectively.

Lemma 2.1. Suppose m ≥ 2; then for any two consecutive sn = 3−ni� s′n =
3−n�i− 1�, we have

1
�n+ 1�θ ≤

µn�s′n�
µn�sn�

≤ �n+ 1�θ�
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where

θ =
(

m

�m+1
2 �

)
= max

1≤i≤m
pi/ min

1≤i≤m
pi�

Proof. It is clear that the lemma is true for n = 1. Suppose it is true
for n = k. Consider n = k+ 1; then there is an integer r such that sk+1 =
 k+1
j=1 3

−jxj = 3−kr + 3−�k+1�xk+1. We can write

sk+1 = 3−k�r − j� + 3−�k+1��xk+1 + 3j��
where r − j ≥ 0 and 0 ≤ xk+1 + 3j ≤ m. Denote this set of j by J1. It
follows that

µk+1
(
sk+1

) = ∑
j∈J1

µk
(
3−k�r − j�)P�X = xk+1 + 3j��

Similarly the preceding value s′k+1 = sk+1 − 3−�k+1� satisfies

µk+1
(
s′k+1

) = ∑
j∈J2

µk
(
3−k�r − j�)P�X = �xk+1 − 1� + 3j��

where J2 is the set of j such that 0 ≤ xk+1 − 1+ 3j ≤ m. Note that

j ∈ Jl if and only if
−xk+1 + εl

3
≤ j ≤ m− xk+1 + εl

3
�

where ε1 = 0 and ε2 = 1� l = 1� 2. There are three possibilities: (a) J1 ⊂ J2,
(b) J2 ⊂ J1, and (c) J1 = J2. In case (a), j′ = �m− xk+1 + 1�/3 is the only
integer contained in J2\J1 and P�X = �xk+1 − 1� + 3j′� = P�X = m� =
min0≤i≤m pi. Then

µk+1�s′k+1�
µk+1�sk+1�

≤
(

max
0≤i≤m

pi
)∑

j∈J1 µk�3−k�r − j�� + µk�3−k�r − j′��P�X = m�(
min

0≤i≤m
pi
)∑

j∈J1 µk
(
3−k�r − j�)

= θ+ µk
(
3−k�r − j′�)∑

j∈J1 µk
(
3−k�r − j�)

≤ θ+ µk
(
3−k�r − j′�)

µk
(
3−k�r − �j′ − 1��)

≤ θ+ kθ (by induction)

= �k+ 1�θ�
A similar proof implies that the lower bound of the quotient is 1

�k+1�θ . Case
(b) follows by the same argument and case (c) is trivial.
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Proposition 2.2. Let m ≥ 2; then

α�s� = lim
n→∞

∣∣∣∣ logµn�sn�n log 3

∣∣∣∣�
provided that the limit exists. Otherwise we can replace α�s� by α�s� and α�s�
and consider the upper and the lower limits.

Proof. By definintion it is clear that

α�s� = lim
n→∞

∣∣∣∣ logµ�B3−n�s��
n log 3

∣∣∣∣�
Also it is easy to prove that

µ
(
B3−n�s�

) ≤ µn(Br3−n�s�) ≤ µ(B2r3−n�s�
)

for r = 1+ m
2 and Br3−n�s� contains at most �2r� consecutive sn (�x� is the

greatest integer ≤ x). The proposition hence follows from the lemma.
It is clear that if m ≥ 3, then the series representation s =  ∞j=13

−jxj
is not unique. In the following we will prove a key lemma concerning the
multiple representations of s. It will be used throughout the paper.

Proposition 2.3. Let s =  ∞j=13
−jxj� s′ =  ∞j=13

−jx′j , and s − s′ =
 ∞j=13

−jyi.

(i) If sn = s′n, then xn ≡ x′n (mod 3). If, further, we assume that �yj� ≤ 3
for all j, then �y1� � � � � yn� can be decomposed as segments of the forms

�0� 0� � � � � 0�� ±�−1� 3� and ± �−1� 2� � � � � 2� 3�� (2.1)

(ii) Conversely if �y1� � � � � yn� � � �� can be decomposed as segments as in
(2.1) or ±�−1� 2� 2� � � ��, then s = s′.
Proof. To prove the first statement in (i), we multiply 3n to sn − s′n = 0.

It follows that

3n�x1 − x′1� + · · · + 3�xn−1 − x′n−1� + �xn − x′n� = 0

and hence xn ≡ x′n (mod 3). For the second statement in (i), we note that
the last non-zero term of y1� � � � � yn must be congruent to 0 module 3. Since
�yj� ≤ 3, we can assume without loss of generality that yn = 3. Hence by
rewriting sn = s′n as∑n−2

j=1
3−jyj + 3−�n−1��yn−1 + 1� = 0� (2.2)

we see that yn−1 + 1 ≡ 0 (mod 3). Since �yj� ≤ 3, either yn−1 = −1 or 2. If
yn−1 = −1, then �yn−1� yn� = �−1� 3� as asserted. We repeat the same argu-
ment to  n−2

j=1 3
−jyj = 0. If yn−1 = 2, then we can write (2.2) as  n−2

j=1 3
−jyj +

3−�n−2� = 0 so that ∑n−3

j=1
3−jyj + 3−�n−2��yn−2 + 1� = 0�
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This is the same form as (2.2) and the process can be repeated. The proof
for (ii) is trivial.

We conclude this section by introducing some notations. For s =
 ∞j=13

−jxj , we write the digits by the vector x = �x1� x2� � � �� and let �s� be
the equivalent class of the x′ = �x′1� x′2� � � �� such that s =  ∞j=13

−jx′j . Also
we let

�sn� =
{
�x′1� � � � � x′n�� sn =

n∑
j=1

3−jx′j

}
�

3. THE EXTREME LOCAL DIMENSIONS

In this section, we assume that µ is the mth convolution of the Cantor
measure, m ≥ 2. Then µ is supported by �0� m2 �. Let

α = sup�α�s�� s ∈ suppµ	 and α = inf�α�s�� s ∈ suppµ	�
Proposition 3.1. For m ≥ 2� α = m log 2

log 3 and the value is attained at
s = 0 or m

2 .

Proof. Let s =  ∞j=13
−jxj ∈ �0� m2 �. Then

µn�sn� ≥
n∏
j=1

P�X = xj� ≥ 2−mn�

It follows from Proposition 2.2 that

α�s� = lim
n→∞

∣∣∣∣ logµn�sn�n log 3

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ log 2−mn

n log 3

∣∣∣∣�
On the other hand consider s = 0 or s = m

2 ; they have unique digit rep-
resentation �0� 0� � � �� or �m�m� � � �� respectively. By Proposition 2.2 and a
direct calculation, it is clear that α�s� = m log 2

log 3 .
Let K�α� = �s ∈ suppµ� α�s� = α	, i.e., the set of points s such that the

local dimension of µ at s is α.

Theorem 3.2. Let m ≥ 3. Then

(i) K�α� = �0� m2 	.
(ii) K�α� = φ for all α∗ < α < α, where

α∗ =



m log 2
log 3

−
log

(
m

m/2−1

)
log 3

� if m is even,

m log 2
log 3

−
log

(
m

�m+1�/2
)+ log

(
m

�m+1�/2−2

)
2 log 3

� if m is odd.
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The unexpected part of the theorem is that there is no point the local
dimension of µ is between α∗ and α. Note that (ii) of the theorem is not
true for m = 2 (see [4]). We need a few technical lemmas to prove the
theorem. The main idea is that for any s other than 0 and m

2 , we can find
another representation with digits around the middle of 0� 1� � � � �m so that
s will associate with a heavier weight. The local dimension can be computed
to be much smaller than α and hence produces a gap there. The first one
is a pre-lemma of Lemma 3.4.

Lemma 3.3. Let m ≥ 3 and let s =  ∞j=13
−jxj ∈ �0� m2 �. Then for any fixed

3 ≤ r ≤ m, there exists k and another representation s =  ∞j=13
−jx′j such that

0 ≤ x′j ≤ r − 1 for all j ≥ k.
Proof. We assume the contrary; let q = max�xj� j > 1	 ≥ r, x1 �= q

and there are infinitely many xj = q. We can use the following procedure
repeatedly to reduce the size of q until q ≤ r − 1.

(i) There exists i0 such that xj = q for all j > i0 and xi0 < q. Let

x′i0 = xi0 + 1� x′j = xj − 2 ∀j > i0� and x′j = xj ∀j < i0�

Then by Proposition 2.3(ii), s =  ∞j=13
−jx′j and maxj>i0�x′j	 = q− 2.

(ii) If xj < q for infinitely many j, we can assume without loss of
generality that x1 < q − 1 (this condition will appear in the following x′n
in the second iteration) and let n be the smallest integer such that xn = q.
Let i0 be the largest integer less than n such that xi0 < q− 1. Let

x′i0 = xi0 + 1� x′n = xn − 3� x′j = xj − 2 for i0 < j ≤ n− 1�

and x′j = xj otherwise. Then s =  ∞n=13
−jx′j by Proposition 2.3(ii) and

0 ≤ x′j ≤ q − 1� for 1 ≤ j ≤ n. We will repeat this procedure to have all
xj ≤ q− 1.

Lemma 3.4. Suppose that m ≥ 3 and 0 ≤ r ≤ m− 2. Let s =  ∞j=13
−jxj ∈

�0� m2 �; then there exists k and another representation s =  ∞j=13
−jx′j such that

x′j ∈ �r� r + 1� r + 2	 for all j ≥ k.
Proof. By Lemma 3.3 (apply to r + 3) we can assume without loss of

generality that 0 ≤ xj ≤ r + 2 for all j. If r = 0, the lemma is automatic.
Hence we assume that r > 0; we show that we can replace xj = 0 by
1 ≤ x′j ≤ r + 2, where r ≥ 1. Assume that there exist some xn = 0. We
need to deal with two cases.

(i) If xj = 0 or 1 for all j, let j0 = min�j� xj = 1	. Define

x′j = 0 for j ≤ j0� x′j = xj + 2 for j > j0�

Then 2 ≤ x′j ≤ 3 ≤ r + 2 for j > j0 and s =  ∞j=13
−jx′j by Proposition 2.3.
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(ii) Otherwise consider a segment of the form �xi� xi+1� � � � � xn� with
xi > 1� xi+1� � � � � xn−1 = 0 or 1 and xn = 0. We define

x′i = xi − 1� x′n = xn + 3� and x′j = xj + 2� i < j ≤ n− 1�

Then s =  nj=13
−jx′j and x′j > 0 for i ≤ j ≤ n. We repeat this process until

all the 0 after xn are replaced.

After we have 1 ≤ x′j ≤ r + 2 we can repeat the same process until we
obtain a representation s =  ∞j=13

−jx′′j with r ≤ x′′j ≤ r + 2.

Lemma 3.5. Suppose m ≥ 3 and 0 ≤ r ≤ m − 2. Let s =  ∞j=13
−jxj ∈

�0� m2 �; then there exists k and another representation s =  ∞j=13
−jx′j satisfying

(i) x′j ∈ �r� r + 1� r + 2� r + 3	 for all j ≥ k.
(ii) For any j ≥ k� �x′j� x′j+1� �= �r� r�� �r� r + 3�� �r + 3� r��

�r + 3� r + 3�.
Consequently if n′ is the total number of digits x′j such that x′j = r + 1 or

r + 2, then n′ ≥ �n− k�/2.
Proof. By Lemma 3.4, we can assume that xj ∈ �r� r + 1� r + 2	. For

convenience we also let r = 0 so that xj = 0� 1 or 2. We need to replace
the segments �xj� � � � � xj+k� = �0� � � � � 0�� k ≥ 1, to satisfy conditions (i)
and (ii).

Without loss of generality we assume that x1 �= 0. Let �xi0� � � � � xi0+k� be
the first segement of 0 with xi0−1 and xi0+k+1 ≥ 1. If �x1� x2� � � � � xi0−1� =
�1� 0� 1� 0� � � � � 1� 0� 1�, then let j0 = 1. Otherwise �x1� x2� � � � � xi0−1� con-
tains a 2 or �1� 1�; we let

j0 = max�j < i0� xj = 2 or �xj−1� xj� = �1� 1�	�
(Note that for j0 < j < i0, the digits xj are alternative 0 and 1.) We define

x′j0 = xj0 − 1� x′j = xj + 2 for j0 < j ≤ i0 + k− 1� x′i0+k = 3

and x′j = xj otherwise. Then s =  ∞j=13
−jx′j and for 1 ≤ j ≤ i0 + k, x′j satisfy

conditions (i) and (ii) of the lemma. We repeat this argument for j > i0 + k
and (i) and (ii) of the lemma will follow. The second part is clear.

Proof of Theorem 3.2. If m is even, then by Lemma 3.4, there exists
k and another series representation s =  ∞j=13

−jx′j such that x′j ∈ �m2 −
1� m2 �

m
2 + 1	 for all j ≥ k. It follows that

µn�sn� ≥
n∏
j=1

P�X = x′j� ≥ C
(
2−m

(
m

m
2 − 1

))n
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(C depends on k) so that

α�s� = lim
n→∞

∣∣ logµn�sn�
n log 3

∣∣ ≤ α∗�
If m is odd, we take x′j ∈ �r� r + 1� r + 2� r + 3	 where r = m+1

2 − 2; then by
Lemma 3.5,

µn�sn� ≥
n∏
j=1

P�X = x′j� ≥ C
(
2−m

(
m
m+1

2

))n/2(
2−m

(
m

m+1
2 − 2

))n/2

and α�s� ≤ α∗. Now (i) and (ii) follow from this and Proposition 3.1.
Our second theorem is concerned with the smallest local dimension α.

We can prove it only for the case m ≤ 4.

Theorem 3.6. Let 2 ≤ m ≤ 4. Then

α =




3 log 2
log 3

− 1 ≈ 0�89278 if m = 3 or 4,

log 2
log 3

≈ 0�63093 if m = 2.

Moreover the infimum is attained at s =  ∞j=13
−j = 1

2 if m = 2; s =
 ∞j=13

−j2 = 1 if m = 4; and s =  ∞j=13
−jxj� xj = 1 or 2 if m = 3.

Proof. We will prove the theorem for m = 4. The case for m = 3 and
m = 2 can be handled in the same way. Let t =  ∞j=13

−j2. We claim that
�tn� = ��2� � � � � 2�	. Indeed for �x1� � � � � xn� ∈ �tn�, by Proposition 2.3(i),
xn − tn ≡ 0 (mod 3); hence xn = 2 also. Thus �x1� � � � � xn−1� ∈ �tn−1� and a
simple induction implies that xi = 2� 1 ≤ i ≤ n. Hence

µn�tn� =
(
2−4

(
4
2

))n
=
(

6
24

)n

and

α�t� = lim
n→∞

∣∣∣∣ logµn�tn�n log 3

∣∣∣∣ = 3 log 2
log 3

− 1 = α�

It remains to show that for any s =  ∞j=13
−jxj , µn�sn� ≤ µn�tn� so that

α�s� ≥ α. We will prove this by induction. For the case n + 1,we divide it
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into three cases:

(i) If xn+1 = 2, then

µn+1�sn+1� = µn�sn�P�X = 2� ≤
(

6
24

)n( 6
24

)
= µn+1

(
tn+1

)
�

(ii) If xn+1 = 0 (or 3), then by Proposition 2.3(i), for any other rep-
resentation sn+1 =  n+1

j=1 3
−jx′j� x

′
n+1 has two choices: 0 or 3. Let s�1�n � s

�2�
n be

the corresponding n-sum of the two choices; then

sn+1 = s�1�n + 3−�n+1�0 = s�2�n + 3−�n+1�3�

By the induction hypothesis we have

µn+1�sn+1� = µn�s�1�n �P�X = 0� + µn�s�2�n �P�X = 3�

= µn�s�1�n �
(

1
24

)
+ µn�s�2�n �

(
4
24

)

≤ µn�tn�
(

5
24

)
=
(

6
24

)n( 5
24

)

<

(
6
24

)n+1

= µn+1�tn+1��

(iii) If xn+1 = 1 (or 4), the proof is the same as (ii) since P�X = 0� =
P�X = 4� and P�X = 1� = P�X = 3�.

4. THE EXACT RANGE OF LOCAL DIMENSION: m = 3

In this section we only consider that µ is the three time convolution
of the standard Cantor measure. In last section we showed that there is
no s ∈ suppµ with local dimension α ∈ �α∗� α� where α∗ = 3 log 2

log 3 − 1
2 and

α = 3 log 2
log 3 . However, such α∗ is not the best possible value. We will sharpen

this result in the sequel.

Lemma 4.1. Let 0 < β1� β2 be fixed and let βn+1 = 4βn +  n−1
j=1 3

n−jβj .
Then

(i) βn+1 = 7βn − 9βn−1.

(ii) βn+1 = cbn + c′b′n where b� b′ = 7±√13
2 (≈ 5�3, 1.7, respectively)

are roots of x2 − 7x+ 9 = 0, and c and c′ depend on β1 and β2.



convolution of the cantor measure 11

Proof. By definition,

βn+1 = 4βn + 3

(
βn−1 +

n−2∑
j=1

3n−1−jβj

)
= 4βn + 3�βn − 3βn−1��

So (i) follows. It is easy to show that �βn	 is an increasing sequence and
b = limn→∞ βn+1/βn satisfies b2 − 7b+ 9 = 0. The expression of βn in (ii)
follows from [1, Chap. 6].

We remark that c� c′ are uniquely determinined by the two equations
c + c′ = β1� cb+ c′b′ = β2; i.e.,

c = β2 − β1b
′

b− b′ and c′ = β1b− β2

b− b′ �

In the later part we will have β2 ≥ 4β1 so that c is always positive, but
c′ can be positive or negative. If c′ > 0, then βn+1 > cbn. If c′ < 0, then
βn+1 ≥ �c + c′�bn = β1b

n.
The calculation in this section depends very much on the following special

t and its variations.

Lemma 4.2. Let t =  ∞j=13
−jxj = 1

8 with x = �0� 1� 0� 1� � � ��. Then

µ2n−1�t2n−1� =
βn

82n−1 � µ2n�t2n� =
3βn
82n �

where βn is defined as in Lemma 4.1 with β1 = 1� β2 = 4. In this case
βn ≥ 0�63bn−1.

Proof. For n = 1� µ1�t1� = 1
8 = β1/8. For n = 2, by Proposition 2.3(i)

we see that t3 has two representations: �t3� = ��0� 1� 0�� �0� 0� 3�	. There-
fore

µ3�t3� = p0p1p0 + p0p0p3 =
4
83 =

β2

83 �

For n we observe that for �x′1� � � � � x′2n−1� ∈ �t2n−1�, Proposition 2.3(i)
implies that 0 − x′2n−1 ≡ 0 (mod 3). We have the following two cases for
x′2n−1.

(a) x′2n−1 = 3: By Proposition 2.3(ii) we can find an i such that

�xi − x′i� � � � � x2n−1 − x′2n−1� = �1�−2� � � � �−2�−3��
Note that xi − x′i = 1− x′i = 1 implies that xi = 1� x′i = 0; i.e., i is an even
integer and hence

�x′i� � � � � x′2n−1� = �0� 2� 3� 2� 3� � � � � 2� 3� 3��
Let i = 2k; then the digit 2 occurs �n − k − 1� times, 3 occurs �n − k�
times, and 0 occurs once.
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(b) x′2n−1 = 0: By Proposition 2.3(ii), the preceding term x
′
2n−2 must

be 1 so that t2n−3 = t
′
2n−3.

We see that t2n−1 has only two representations as in (a), (b); hence

µ2n−1�t2n−1� = µ2n−3�t2n−3�p1p0 +
n−1∑
k=1

µ2k−1�t2k−1�p0p
n−k−1
2 pn−k3

= 3βn−1

82n−1 +
n−1∑
k=1

3�n−k−1� βk
82n−1 =

βn
82n−1 �

This completes the induction for the first equality. For the even case we
observe that t2n = t2n−1 + 3−2n is the only representation for s2n. This im-
plies that

µ2n�t2n� = µ2n−1�t2n−1�
3
8
= 3βn

82n �

The last inequality follows from the remark after Lemma 4.1 with c ≥ 0�63.

Corollary 4.3. Let xt = �0� 1� 0� 1� � � �� and for x = �x1� x2� � � �� let s =
 ∞j=13

−jxj
(i) If x = �2� xt�, then

6bn−1

82n ≤ µ2n�s2n� ≤
7bn−1

82n �

(ii) If x = �2� 3� 1� xt�, then

4bn−1

82n ≤ µ2n�s2n� ≤
7bn−1

82n �

(iii) If x = �1� 1� xt�� �2� 1� xt�� �1� 2� xt� or �2� 2� xt�, then
2bn

82n+1 ≤ µ2n+1�s2n+1� ≤
4bn

82n+1 �

Proof. (i) Consider x = �2� xt� = �2� 0� 1� 0� � � ��. s2 has two represen-
tations, �2� 0� and �1� 3�, so that

µ2�s2� =
3+ 3
82 = 6

82 �=
β1

82 �

s4 has five representations, �2� 0� 1� 0�, �1� 3� 1� 0�, �2� 0� 0� 3�, �1� 3� 0� 3�,
�1� 2� 3� 3�; hence

µ4�s4� =
9+ 9+ 3+ 3+ 9

84 = 33
84 �=

β2

84 �

Now using the same argument as in Lemma 4.2, we have µ2n�s2n� = βn/82n,
where β1 = 6� β2 = 33. We can calculate c′ ≈ −0�33� c ≈ 6�33 as in
Lemma 4.1. By the remark after Lemma 4.1, we have 6bn−1 ≤ βn ≤ 7bn−1

and (i) follows.
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(ii) For x = �2� 3� 1� xt�, s2 has two representations, �2� 3� and �3� 0�;
s4 has five representations, �2� 3� 1� 0�� �2� 3� 0� 3�� �3� 0� 1� 0�� �3� 0� 0� 3�,
and (2, 2, 3, 3). Hence we have β1 = 4� β2 = 25, and we can show that
c ≈ 5�05� c′ ≈ −1�05. This implies that 4bn−1 ≤ βn ≤ 7bn−1.

(iii) The proof is similar.

Theorem 4.4. Let α̃ = 3 log 2
log 3 − log b

2 log 3 ≈ 1�1335. Then K�α� = φ for all
α̃ < α < α. Moreover the value α̃ is attained at t =  ∞j=13

−ixj (i.e., α�t� = α̃)
where �x1� x2� � � �� = �0� 1� 0� 1� � � ��.
Remark. This improves Theorem 3.2 for m = 3 where α∗ = 3 log 2

log 3 − 1
2 ≈

1�39278.

Proof. Let t =  ∞j=13
−jxj where �x1� x2� � � �� = �0� 1� 0� 1� � � ��. That

α�t� = α̃ is a direct consequence of Lemma 4.2. We claim that for any
s =  ∞j=13

−jxj with xj = 0� 1� 2� 3, there is a constant c depending on s
such that

µ2n�s2n� ≥
cbn

82n and µ2n+1�s2n+1� ≥
cb

3
bn

82n+1 � (4.1)

This will imply K�α� = φ for α̃ < α < α.
To prove the claim, we can assume, by Lemma 3.4, that xj = 0� 1, or 2.

For convenience we assume further that x1 = 1 (or 2) and c = 1
2 (otherwise,

we can start from the first non-zero term and adjust the constant c). We
will prove the statement by two inductive steps:

Step 1. We show that for 1 ≤ n ≤ n0,

µ2n�s2n� ≥
cbn

82n ⇒ µ2n+1�s2n+1� ≥
cb

3
bn

82n+1 �

It is straightforward to verify this for n = 1. Suppose it is true for n = k− 1
and consider n = k. If the final digit x2k+1 is 1 or 2, then

µ2k+1�s2k+1� = µ2k�s2k�p1 ≥
cbk

82k

3
8
≥ cb

3
bk

82k+1 �

If the final digit x2k = 0, then we run the digits 0 and 1 alternatively back-
ward and stop at i until one of the following cases occurs:

(i) �x1� � � � � xi� 2� 0� 1� � � � � 0� 1� 0�;
(ii) �x1� � � � � xi� 1� 0� 1� � � � � 0� 1� 0�, where xi �= 0;

(iii) �x1� � � � � xi� 0� � � � � 0� 1� � � � � 0� 1� 0� where xi �= 0 and there are
at least two consecutive zeros starting from the �i+ 1�th term.
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In case (i) we see that i is odd. Write i = 2j + 1; then by Corollary 4.3(i)
and induction,

µ2k+1�s2k+1� ≥ µ2j+1�s2j+1�
6bk−j−1

82�k−j� >
cb

3
bj

82j+1

6bk−j−1

82�k−j� >
cb

3
bk

82k+1 �

In case (ii), i = 2j + 1 for some j; we divide the digits into two segments
�x1� � � � � xi−1� and �xi� 1� 0� 1� � � � � 1� 0�. Then

µ2k+1�s2k+1� ≥ µ2j�s2j�
2bk−j

82�k−j�+1
≥ cbj

82j

2bk−j

82�k−j�+1
>
cb

3
bk

82k+1 �

In (iii) we consider the case with xi = 1 and only two consecutive zeros
after xi (for the case of more zeros or xi = 2, the proof is the same). It
is clear that i is odd. Write i = 2j + 1. There are at least two representa-
tions as follows. We divide the digits into two subcases (by parentheses) for
calculation:

(a) �x1� � � � � xi−1� 1� 0��0� 1� 0� 1� 0� � � � � 1� 0�.
(b) �x1� � � � � xi−1� 0��2� 3� 1� 0� 1� 0� � � � � 1� 0�.

Using induction and Lemma 4.2 with βn ≥ 0�63bn−1 as well as Corol-
lary 4.3(ii) we have

µ2k+1�s2k+1� ≥
cbj+1

82�j+1�
βk−j

82k−2j−1 +
cb

3
bj

82j+1

4bk−j−1

82�k−j�

≥ cbk

82k+1

(
0�63+ 4

3

)
>
cb

3
bk

82k+1 �

This proves the claim of Step 1.

Step 2. To prove (4.1), assume that the statement is true for 2n and then
use Step 1 to prove the case 2n + 1. Then follow by the same induction
method as in Step 1 to prove the case 2�n+ 1�.

In the above we see that if x = �2� 2� � � �� or �0� 1� 0� 1� � � ��, then the cor-
responding sum s =  ∞j=13

−jxj has the smallest local dimension α and the
second largest local dimension α̃, respectively. We will show that �α� α̃� is
the essential range of the local dimension of µ, i.e., for α ∈ �α� α̃�; by suit-
ably arranging the above two patterns of x, we can find an s ∈ suppµ such
that α�s� = α.

We need a few notations. Let �kj	∞j=1 be a sequence of positive integers,
let nl be the lth partial sum of �kj	∞j=1, and el and ol are the respective
sums of the even and odd terms of �kj	lj=1. Obviously nl = ol + el.
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Lemma 4.5. Let s =  ∞j=13
−jxj , where

x = �2� � � � � 2︸ ︷︷ ︸
k1

� 2� 0� 1� 0� � � � � 1� 0︸ ︷︷ ︸
k2

� 2� � � � � 2︸ ︷︷ ︸
k3

� 2� 0� 1� 0� � � � � 1� 0�︸ ︷︷ ︸
k4

� � ���

Then there exists c� d > 0 such that

c�l/2�3olbel/2

8nl
≤ µnl�snl� ≤

d�l/2�3olbel/2

8nl
� (4.2)

Proof. We can modify Corollary 4.3(i) for s =  ∞j=13
−jxj with

x = �2� 0� 1� 0� 1� � � �� to find c� d > 0 such that

cbn/2

8n
≤ µn�sn� ≤

dbn/2

8n
� (4.3)

We now use induction to prove (4.2). For l = 1� µn1
�sn1
� = � 38�o1 and the

lemma is trivially true. For l = 2, suppose �y1� � � � � yk1
� yk1+1� � � � � yk1+k2

�
is another representation of sk1+k2

corresponding to �x1� � � � � xk1+k2
� =

�2� � � � � 2� 2� 0� 1� � � � � 1� 0�. We first claim that y1 = 2. Otherwise by Propo-
sition 2.3, we necessarily have

�x1 − y1� � � � � xk1+1 − yk1+1� = �−1� 2� � � � � 2��
Also by the same lemma, xk1+2 − yk1+2 = 0 − yk1+2 = 2 or 3, which is
impossible. Hence y1 = 2, and the same proof shows that y2 = · · · = yk1

=
2. Therefore

µn2
�sn2
� =

(
3
8

)n1

µk2
�sk2
��

which satisfies (4.2) by (4.3). Suppose (4.2) is true for l − 1 where l is odd.
By the same argument as the case l = 2, we have yi = 2 for all nl−1 + 1 ≤
j ≤ nl. Hence

µnl�snl� = µnl−1
�snl−1

�
(

3
8

)kl
and

µnl+1�snl+1� = µnl−1
�snl−1

�
(

3
8

)kl
µkl+1�skl+1��

This proves the estimate in (4.2).

Theorem 4.6. Let µ and α, α̃ be defined as before. Then for any α ∈
�α� α̃�, there exists s ∈ �0� l� such that α�s� = α.
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Proof. Recall that α = 3 log 2
log 3 − 1, α̃ = 3 log 2

log 3 − log b
2 log 3 . Then for α ∈ �α� α̃�

we can write α = θα+ �1− θ�α̃ for some 0 < θ < 1. Let

kj =
{

2j if j is odd
2
[ j�1−θ�

θ

]
if j is even.

Let s =∑∞j=1 3−jxj be the form as in Lemma 4.5 with kj so defined. Then

lim
l→∞

ol
nl
= θ� lim

.→∞
.

nl
= 0� and lim

l→∞
nl−1

nl
= 1�

By (4.2) and a direct calculation we have

α�s� = lim
n→∞

∣∣∣∣ logµn�sn�n log 3

∣∣∣∣ = α�
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