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ABSTRACT. In the recent characterizations of  the Lp solution of  the refinement equation in terms of  the 

"p-norm joint spectral radius," there are problems in choosing the initial function for  iteration [3, 23], or in 

addition, requiring stability o f  the refmable function [13, 17], In this article we overcome these difficulties and 

give a more complete characterization of  this nature. The criterion is constructive and can be implemented. It 

can be used to describe the regularity of  the solution without ussuming stability. This has significant advantages 

over the previous work. The corresponding results for vector refinement equations are also discussed. 

1. Introduction 

A refinement equation is a functional equation of the form 

tp(x) = ~ " ~ g  a(tx)qS(2x -- or) , (1.1) 

where a is a finitely supported sequence on Z, called the refinement mask. The study of refinement 
equations plays an important role in wavelet analysis. 

Throughout this article we assume that )--Jazz a(c~) = 2. Under this condition, it is well known 
(see [ 1] and [4]) that the refinement equation (1.1) has a unique compactly supported distributional 
solution ~b subject to q~(0) = 1, where q~ denotes the Fourier transform of ~b. This solution is called 
the normalized solution of (1.1). 

The question of existence of continuous solutions and L p solutions (1 < p < oo) of refinement 
equations has attracted much attention from mathematicians in approximation theory and wavelet 
analysis. Micchelli and Prautzsch [24] first provided necessary and sufficient conditions for the 
existence of continuous solutions of refinement equations. In [4], Daubechies and Lagarias used 
the joint spectral radius of two matrices in their study of refinement equations. Co/ella and Heil [3] 
characterized the existence of continuous solutions in terms of the joint spectral radius of two matrices 
associated with the mask. 
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In [23], Lau and Wang gave a characterization of the existence of compactly supported Lp 
solutions (1 < p < c~) of refinement equations. Suppose the mask a is supported on [0, N], where 
N is a positive integer. Let A0 and A 1 be the matrices given by 

A0 := (a(2i -- J))o<i,j<N-1 and A1 := (a(2i - j + 1))O<i,j<N_ 1 . 

For J = (jl . . . . .  jk),  where ji = 0 or 1, i = 1, 2 . . . . .  k, we define 

A j  := Ajl . . .  Ajk . 

The length of J is denoted by [J I. The result of Lau and Wang [23, Theorem 1.3] can be stated as 
follows: The refinement equation (1.1) has a nonzero compactly supported Lp-solution (1 < p < ~ )  
if and only if there exists a 2-eigenvector/) of (A0 + A l) such that 

1 
E IIAj (Ao - I)/)ll p --+ 0 as l --+ oo . (1.2) 2-7 
IJl=l 

It is possible that 2 is a multiple eigenvalue of A0 + A1. The following is such an example. 
Let a be the mask given by its symbol 

~l(Z) := E j ~ Z  a ( J ) z J  = 1 - -  Z + Z 2 --I- Z 3 - -  Z 4 --I- Z 5 �9 

In this case, N = 5 and 

A o + A 1  = 

[ 100 ] 
0 0 1 
0 2 0  
1 0 0 
0 0 1 

Clearly, 2 is a double eigenvalue of A0 + AI. The corresponding eigenspace has dimension 2 and a 
basis consisting of (0, 0, 1, 0, 0) T and (1, 2, 0, 2, 1) r .  A 2-eigenvector v of (A0 + A1) has the form 

/) = )~/)1 - 1 - / / , / ) 2  , 

where 3.,/z e C. In this case, it is impossible to check (1.2) for all 2-eigenvectors of (A0 + A1). 
Therefore, the above theorem is not applicable to this example. The same phenomenon occurs in the 
work of Micchelli and Prautzsch [24]. This difficulty was also recognized by Colella and Heil [3]. 

The purpose of this article is to give a complete characterization for the refinement equa- 
tion (1.1) to have nontrivial continuous solutions or Lp solutions (1 _< p < c~) strictly in terms 
of the mask. It solves the problem mentioned in the preceding paragraph. We will also provide a 
complete characterization for the regularity of the solutions in terms of the mask. All our results are 
obtained without any assumption on the stability of ~. 

The main tool in our study is the joint spectral radius of a finite collection of matrices. The 
uniform joint spectral radius was introduced by Rota and Strang in [25]. The mean spectral radius 
was introduced by Wang [29] in his study of L1 refinable functions. The concept of the p-norm 
joint spectral radius was defined by Jia in [13] and was used implicitly by Lau and Wang [23] 
independently. Let us recall from [13] the definition of the p-norm joint spectral radius. 

Let V be afinite-dimensional vector space equipped with a vector norm II �9 II. For a linear 
operator A on V, define II A II := maxll vii=l{ II A v II }. Let .A be a finite collection of linear operators 
on V. For a positive integer n we denote by .A n the nth Cartesian power of .,4: 

A n = { ( A 1  . . . . .  A n ) : A 1  . . . . .  A ,  e A } .  
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F o r l  < p < o c ,  let 

) 1/p 

11`4"11  :-- Ilal . . . an [ [  p , 
(Al ..... An)Z.A n 

and for p = oo, define 

11"4" Iloo := max {lla~ . . . a . I I  : ( a l  . . . . .  An) E "4 n } �9 

For 1 < p < oo, the p - n o r m  joint  spectral  radius  of  4̀,4 is defined to be 

pp('4) :=  lim 11,4-11)/" n---} CX) 

It is easily seen that this limit indeed exists, and 

lim [I "4n II = inf [1,4 n [[ lpln. 
n--~oo n>l 

Clearly, pp (,4) is independent of  the choice of  the vector norm on V. I f , 4  consists of  a single linear 
operator A, then pp (.4) = p (A), where p (A) denotes the spectral radius of  A, which is independent 
of  p. 

The above definition of  joint spectral radius also applies to a finite collection of  square matrices 
o f  the same size. Indeed, an s x s matrix can be viewed as a linear operator on C s. Thus, if .2, is a 
finite collection of  s x s matrices, the joint spectral radius pp('4) is well defined for 1 < p < oo. 
For the computation and the estimation of  the p-norm joint spectral radius, see the examples and 
the discussion in Section 4. In particular in [21] and [31], when p is an even integer, the p-norm 
joint spectral radius can be computed exactly and explicitly in terms of  the spectral radius of  a finite 
matrix. 

Before proceeding further, we introduce some notation. As usual, let N denote the set of  
positive integers, and Z the set of  integers. By e(Z) we denote the linear space of  all sequences on 
Z, and by e0(Z) we denote the linear space of  all finitely supported sequences on Z. For v ~ e0(Z) 
and k ~ Z, define Vkv :=  v - v(. - k). When k = 1, Vt will be abbreviated as V. We also define 
Av :=  - v ( .  + 1) + 2v - v(. - 1). For a ~ e0(Z), its symbol  is defined by 

a ( z )  : =  E j e z a ( j ) z  j ,  Z E C \ {0} b 

Let a be an element of e0(Z). For s ~ {0, 1}, let AE be the linear operator on e0(Z) given by 

AEv(ot) = E ~ e Z  a(s + 2or -- fl)v(/3), ot E Z, v E e0(Z) �9 (1.3) 

By V(v) we denote the minimal common invariant subspace of  A0 and A1 generated by v. For a 
detailed procedure of  finding V(v), see Section 3. We write Ta for A0 and call it the transition 
operator associated with a. 

For a bounded subset K of  I~, we denote by e(K) the linear space of  all sequences supported 
on K ~ Z. Suppose the mask a is supported on the interval [N1, N2], where N1 and N2 are integers 
such that N1 < N2. Then e([N1, N2]) is invariant under the transition operator Ta. Also, if v is an 
eigenvector of  Ta corresponding to a nonzero eigenvalue a ,  then v must be supported on [N1, N2]. 
To see this, let n :=  max{~ : v(ot) r 0}. Suppose n > N2. By Tar = cry we have 

cry(n) = E a(2n -/3)v(/3) . 
/~eZ 

If v(fl) ~: O, then/3 < n; hence 2n - / 3  > n > N2 and a(2n - / 3 )  = 0. It follows that v(n) = O. 
This contradiction shows that n < N2. In other words, v(~) = 0 for ot > N2. Similarly, v(ot) = 0 
for a < N1. Consequently, Ta has only finitely many nonzero eigenvalues. 
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The spectrum of a square matrix A is denoted by spec(A), and it is understood to be the 
multiset of its eigenvalues. In other words, multiplicities of eigenvalues are counted in the spectrum 
of a square matrix. 

Let b be the mask given by/,(z) = 5(z)(1 + z)m/2 m, where m is a positive integer. Then b is 
supported on IN1, N2 + m]. In Section 2 we will establish the following relation between the spectra 
of the transition operators Ta and Tb: 

spec (Tb[e([N1,N2+m])) = 2-m spec (Ta[e([NI,N2])) 13 { 2 - J :  j = 0, 1 . . . . .  m -- 1 } .  

Consequently, ifm is a positive integer such that 2 m > p(Ta [e([N1,N2])), then the above relation 
tells us that 1 is a simple eigenvalue of Tb. 

In Section 3 we will give the following characterization for the existence of Lp solutions and 
continuous solutions of refinement equations. 

Theorem 1. 
Let m be a positive integer such that the transition operator Tb induced by b(z) := ~(z)(1 + 

z)m /2 m has 1 as its simple eigenvalue. Let v be an eigenvector of Tb corresponding to eigenvalue 
1. Then (1.1) has a nontrivial compactly supported L p solution cp (continuous solution in the case 
p = oo) if  and only if  

Pp ( AoIv(vv) , Allv(vo)) < 21/p �9 

One sufficient condition for the existence of an Lp solution is the Lp convergence of the 
subdivision scheme with a stable initial function (the hat or box function). When a is supported 
in [N1, N2], this convergence requires the sum rule: ~--] a(2ot) = ~--~ a(2ot + 1) = 1. Then the Lp 
convergence can be characterized [13, 28] by 

pp ( Aolu , Allu)  < 21/p �9 

Here U is the subspace 

{ ~"~N2-1 U (O~) = 0 } (1.4) U := u e e ([N1, N2 - 1]) : z---,~=N~ 

which is invariant under both A0 and A1. Usually, this subspace contains V(Vv) in Theorem 1, 
see Examples 3, 4, and 5, even if the shifts of the solution are stable. However, [16, Lemma 5.2] 
shows that Pp(Aolw, Ai [w) are often equal for different subspaces W (see [16] for more details). 
In such a case, different invariant subspaces will produce the same result. Since V(Vo) is smaller, 
the computation involving V(Vv) will be simpler. 

The key point of our approach is an appropriate choice of the initial nonstable function in the 
subdivision scheme. In our study, the initial function will be a finite linear combination of shifts of 
the B-spline B1 or B2 with the coefficients chosen appropriately. In [23], the vector of the coefficients 
is chosen as the 2-eigenvector of (A0 + A1). In this article we generalize their method and obtain 
sharper results. 

We shall use the generalized Lipschitz space to measure the regularity of a given function. 
Let us recall from [6] the definition of the generalized Lipschitz space. For t e R, the difference 
operator Vt is defined by Vt f = f - f ( .  - t), where f is a function from R to C. Let k be a positive 
integer. The kth modulus of smoothness of f e Lp(~,) (1 _< p < oo) is defined by 

09k(f, h)p := sup Vtkf , h > 0 .  
Itl<h P 

When k = 1, col(f,h)p reduces to the modulus of continuity w(f ,  h)p. For v > 0, let k be an 
integer greater than v. The generalized Lipschitz space Lip* (v, L p (]~)) consists of those functions 
f e L , ( R )  for which 

wk(f ,h)p  < Ch v Vh > O, 



L p Solutions of Refinement Equations 147 

where C is a positive constant independent of h. 
The optimal regularity of a function f ~ Lp(R) in the Lp norm is described by its critical 

exponent vp ( f )  defined by 

Up(f) := sup { v :  f e Lip* (v, Lp(R)) } . 

Let r be the normalized solution of the refinement equation (1.1) associated with a finitely 
supported mask a. If vp(40 > k for some positive integer k, then the shifts of ~b reproduce all 
polynomials of degree at most k (see [1, p. 158]). Consequently, 1, 1/2 . . . . .  1/2 k are eigenvalues 
of the transition operator Ta (see [15]). However, since a is finitely supported, Ta has only finitely 
many nonzero eigenvalues. This shows that up (~b) < oo. 

In Section 4, we will give the following characterization for the L p regularity of the normalized 
solution ~b of the refinement equation (1.1). 

Theorem 2. 
Suppose the conditions of Theorem I are satisfied. Let k be the smallest positive integer such 

that k > l i p  - log 2 pp(Aolv(vko), A1 ]v(vko)). Then 

ve(r = 1/p - log 2 pp (Aolv(vkv), A11v(vkv) ) �9 

All our results on existence and regularity of Lp solutions without assuming stability can be 
extended to vector refinement equations. For more details, see Section 5. 

2. The Subdivision and Transition Operators 

In this section we investigate the spectral properties of the subdivision and transition operators. 
Let a be an element in g0(Z). The subdivision operator Sa is the linear operator on s 

defined by 

Sau(ot) := ~ z  a(ot - 2/~)u(~), ot 6 Z ,  

where u ~ s The transition operator Ta is the linear operator on s defined by 

Tao(Ct) := ~ / ~ z a ( 2 a  - fl)v(fl), ot~ Z ,  

where v ~ e0(Z). 
We introduce a bilinear form on the pair of the linear spaces g0(Z) and s as follows: 

(u, v) := E a ~ z  u(a)v(-ot) ,  u 6 s v ~ s �9 (2.1) 

For u 6 s and v e s we have 

(Sau, 1)) = ~ ~ u(fl)a(ot - 2fl)l)(-ot) = ~ u( f l ) (Tar) ( - f l )  = (u, Too). 
a~Z #eZ #eZ 

Hence, Sa is the algebraic adjoint of Ta with respect to the bilincar form given in (2. I). It was proved 
by Jia, Ricmenschncider, and Zhou in [15] that Sa and Ta have the same nonzero eigcnvalues with 
the same multiplicities. 

The following result was essentially established by Deslauriers and Dubuc in [5]. Also, see [19] 
for discussions on spectral properties of the transition operator associated with multivariate refine- 
ment equations. 
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Lemma 1. 
Let a be an element in e([N1, N2]), where N1 and N2 are integers such that Nt < N2. Let b 

be given by/~(z) = a(z)(I  + z)'n /2 m, where m is a positive integer Then 

spec (TbIg([N1,N2+m])) = 2-m spec (Tale([N1,N2])) tO { 2 - J :  j = 0,1 . . . . .  m -- 1 } .  (2.2) 

Proof .  It suffices to establish (2.2) for m = 1, since the general case can be easily proved by 
induction on m. 

Let b be the sequence given by/~(z) = a(z)(1 + z)/2. Then b(ot) = [a(ot) + a(t~ - 1)]/2 for 
all ot~ g.  Since ) - -~g  a(ot) = 2, it follows that 

E b(2~) = E b(2~ - 1) = 1. (2.3) 
a ~ g  a~/Z 

For j ~ Z, we denote by aj the element in g0(Z) given by 8j( j )  = 1 and 8j(o~) = 0 for all 
ot ~ Z \ {j}. Clearly, {aN~ . . . . .  ~Nz} is a basis for s N2]). Suppose 

TaSj = E N2 3.kjSk, j = N1 . . . . .  N2. (2.4) 
k=N1 

Note that b is supported on [N1, N2 + 1]. Let 

V := { r E  s + 1] ) :  Z a e g  v(ot) = 0} . 

It is easily seen that {VS/vt . . . . .  VSN2} is a basis for V. For j = N1, . . . ,  N2 and a ~ Z, we have 

rb(v~j)(ot) = E / ~ .  b(2a - t5) [Sj (,8) - ($j (,8 - 1)] 

= ~ Z / ~ E  [ a ( 2 a - , 8 )  + a ( 2 a ~ - - , 8 -  1 ) ] [ S j ( f l ) - S j ( e - 1 ) ]  

1 [',r---~ "1 

2 k=Nl k=U~MJa~(~ 1) . 

Consequently, 

1 
2 5 /  zks (yak), j = NI . . . . .  N2. (2.5) T0 (Vaj) = ~ N, 

We observe that b is supported on [N], N2 + 1] and {8N1, VSN1 . . . . .  VSN2} is a basis for 
e([N1, N2 + 1]). In light of (2.3), we have 

(T SN,) = Z b(2 - N,)  = i 
t~EZ ctEZ 

Hence, TbSNI -- 8~ lies in V. In other words, there exists an element y ~ V such that 

TbSN1 = 8N1 + Y �9 (2.6) 

Combining (2.5) and (2.6), we see that the matrix representation of  To le(tN~,t~2+U) with respect to 
the basis {8N1, V~N 1 . . . . .  Vt~N2 ] is o] 
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where F = (3.jk/2)Nl<_j,k<_N2. This together with (2.4) gives 

spec (Tb I.Wl,N2+q)) = {1} u spec(F)  = {1} U 2 -1 spec ( Ta le<tul,u2D) �9 

This establishes (2.2) for the case m = 1, as desired. [ ]  

Let m be a positive integer such that 1 is a simple eigenvalue of  Tb le([Na,N~+m]). By Lemma 1, 
this is true if 2 m > p(Tale([N, Nz])). Let v be an eigenvector of  Tble([N~,N2+m]) corresponding 
to eigenvalue 1. Let B be the matrix representation of Tble([Nx,Nz+m]) with respect to the basis 
{SN1 . . . . .  8N2+m}. Then (v(N1) . . . . .  v(N2 + m)) T is a right eigenvector of  B associated with 
eigenvalue 1. But (2.3) tells us that (1 . . . . .  1) is a left eigenvector of  B associated with eigenvalue 
1. Hence, 

E a ~ Z  v(ot) = v (N1) + " "  + v (N2 + m )  • 0 .  

As an application of Lemma 1, we construct in what follows a family of  refinable functions 
ePm,n associated with masks am,n such that 4~m,n has the same regularity as that of  the cardinal B-spline 
of  order m, but p(Ta., .)  >_ 2 ~. 

For m = 1, 2 . . . . .  let Bm denote the cardinal B-spline of  order m. Precisely, Bl is the 
characteristic function of the interval [0, 1), and for m >_ 2, 

Bm(x) = Bm-I*BI(x) : Bm-l(X - t)dt,  x E R .  

In particular, B2(x) = max{0, 1 - I x  - ll}, x 6 R. Obviously, Bm is continuous for m > 2. The 
B-spline Bm is supported on [0, m] and is nonnegative. The shifts of  Bm forms a partition of  unity, 
that is, 

~'~'jEZ Bm(X - j )  = 1, x ~ ]R. 

Moreover, Bm is refinable: 

m ( j )  
= 21-m Z Bm(2X - j),  Bin(x) 

j=0 

E x a m p l e  1. 

X E R .  

Let am,n be the sequence given by 

~tm,n(Z) ~21--m (1--I-z3)m (I--Z-lc-z2)n , 

where m is a positive integer and n is a nonnegative integer. Let Cbm,n be the normalized distributional 
solution of  the refinement equation associated with the mask am,n. Then 4~m,n and Bm have the same 
regularity but 

p (ra . . )  >_ 2 n . 

We observe that 

l q_ z_t_ Z2 , m + n  

2(Xq~-'-~z)m =~tm,n(Z)~ .~2~_"~4j  

ProoL 

(2.7) 

The left-hand side of  the above equality is the symbol of  the refinement mask of  the B-spline 
Bin. Thus, from the proof of  [13, Theorem 5.3] we see that ePm,n is a linear combination of Bm, 
Bin(" - 1) . . . . .  Bin(" - 2m - 2n). Therefore, dPm,n and Bm have the same regularity. In particular, 
dPm,n ~ cm-Z(IR) for m > 2. 

In order to prove (2.7), we claim that 1 is an eigenvalue of the subdivision operator Sa.+..o of 
multiplicity at least 2. To see this, we choose two elements ul and u2 in e(Z)  as follows. Let ul be 
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given by u l ( j )  = 1 for all j ~ Z, and let u2 be given by u2(3j) = 1, u2(3j + 1) = u2(3j + 2) = 0 
for all j 6 Z. Note that, for k 6 Z, am+n,o(3k + 1) = 0, am+n,O(3k + 2) = 0, and 

a m + n , o ( 3 k ) = 2 1 - m - n ( m ~ n )  . 

Thus, a simple computation yields 

Sam+.,oUl = Ul and Sam+.,oU2 = u2 �9 

This justifies our claim. Consequently, 1 is an eigenvalue of the transition operator Tam+.,o of 
multiplicity at least 2. Moreover, we have 

~tm+n,O(Z ) = 21-m-n (1 + z3) m+n = ~tra,n(Z)(1 "Jr" z)n /2  n . 

In light of (2.2) we obtain 

spec(Tam+.,ole([O,3m+3n]))=2-nspec(ram,.le([o,3m+2n]))U{2-J:j=O, 1 . . . . .  n - I } .  

Since 1 is an eigenvalue of Ta,.+.,o of multiplicity at least 2, it follows from the above relation that 
2 n belongs to spec(Tam,n le([O,3m+2nD). Hence, (2.7) is true. [ ]  

3. Characterization of Lp Solutions 

In this section we give a characterization for the existence of Lp solutions of the refinement 
equation (1.1) in terms of the mask. 

We first introduce some notations. For 1 < p < oo, the gp norm of an element v in g0(Z) is 
defined by 

H jl, :-- l ' '  

The goo norm of v is defined by Ilvlloo := sup{Iv(a)l : ~ ~ Z}. 
Let .A := {A0, A1 }, where A0 and Al are the linear operators on g0(Z) defined in (1.3). Given 

v ~ s we define, for 1 < p < cx~, 

[[Anvllp:= ( Z e ,  ..... e..{0,1} I Ime. ' ' ' ae lv]]pp)  1/p ' 

and for p = c~, 

IIAnvll  : =  max { l i m e . . . . m e l o [ [ ~  : el  . . . . .  En ~ {0, 1}} . 

It was proved in [9] that there exist two positive constants C1 and C2 such that 

C1 l[ 11.. 4no.., -< An[v, ) _< c2 IIAn l[p V n  ~ N ,  (3.1)  

where V(v)  denotes the minimal common invariant subspace of Ao and A1 generated by v. 
If  the mask a and a sequence v are supported on IN1, N2], then V(v)  is contained in the space 

e([N1, N2]), which is invariant under A0 and A1. Therefore, the dimension of V(v) is at most 
N2 - N1 + 1. Consequently, 

V ( v ) = s p a n { A e l . . . A e ,  v : n = O ,  1 . . . . .  N 2 - N I , e l  . . . . .  en E {0, 1}} . (3.2) 
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To verify our assertion, we set E0 :=  {v} and En :=  {A~ 1 . . .A~nv  : el . . . . .  en ~ {0, 1}} for 
n = 1 . . . . .  N 2 - N I .  I f E n  C_. s p a n { E o U - . . U E n _ l }  for s o m e n  < N e - N l ,  then(3 .2)  is 
true. Otherwise, there exists some Un ~ En \ span{E0 U . . .  U En-I  } for each n = 1 . . . . .  N2 - N1. 
Then v, Ul . . . . .  UN2-N~ will be linearly independent. In this case, V(v)  = span{v, Ul . . . . .  UN2-~v~ } 
and (3.2) is still valid, 

In order to study L p solutions of  the refinement equation we shall employ the following iteration 
scheme. Let Qa be the linear operator on Lp(R)  given by 

Q a f ( x )  :=  E ~ E ~ a ( o t ) f ( 2 x  -or ) ,  f ~ Lp (R )  . (3.3) 

Let ~b0 be an initial function in Lp(1R). For n = 1, 2 . . . . .  let ~bn := Qan~b0. I f  (~bn)n=IA .... converges 
to some ~b in the Lp norm (1 < p < oo), then the limit ~ is a solution of  (1.1). Usually, ~b0 is 
chosen to be the hat function B2. With this choice of  r if ( ~ n ) n = l , 2  .... converges in the Lp norm, 
then we say that the cascade algorithm (or the subdivision scheme) associated with mask a is Lp 
convergent (1 < p < ~ ) .  Let Ao and A1 be the linear operators given in (1.3), and let U be the 
linear space defined in (1.4). It was proved in [13] that the cascade algorithm associated with mask 
a is Lp convergent if and only if pp(A0lu,  A11u) < 21/p. However, if am,n is the mask given in 
Example 1, then (2.7) tells us that the cascade algorithm associated with am,n does not converge in 
the L ~  norm, even though qbm,n is continuous for m > 2. Therefore, the Lp convergence of  the 
cascade algorithm is a sufficient but not a necessary condition for the existence of  Lp solutions. 
Thus, the key to our investigation is an appropriate choice of  the initial function q~o. In our study, 
the initial function will be a finite linear combination of shifts of  the B-spline B1 or B2 with the 
coefficients chosen appropriately. 

Iterating (3.3) n times gives 

n ~-'~acZ an (o0q~0 (2 n x QadPO(X) = - or), n = 1, 2 . . . . .  

In particular, at = a. Consequently, for n > 1 we have 

Qa  O(X) = Qa (Qa 0)(x) = E x - ,) 
= ~ ~an_ l ( f l )a (c t )qJo (2  n x - 2fl -- o~) 

~eZaeZ 

This es tabl i shes thefol lowingi te ra t ionre la t ionforan  (n = 1,2 . . . .  ): 

= a  and a n ( ~ ) = ~ - ~ a n - l ( # ) a ( ~  - al 2~),  

The convolution of u e e0 (Z)and  v e e0(Z)is def inedby 

u*v(a) :=)-~ .~c  z u(a - ~)v(~),  o ~ E Z .  

ot ~ Z .  (3.4) 

Lemma 2. 
I f  ot = ~1 + 2~2 + . . .  + 2n-l~n + 2ny, where ~1 . . . . .  En ~ {0, 1} and y ~ Z, then 

(i) an*v(ot) = AE, . . . A e l v ( y ) ,  and 

(ii) Ilan*Vllp = IlAnvllp. 
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P r o o f .  Clearly, (ii) follows from (i) immediately. The proof  of  (i) proceeds by induction on n. 
F o r n  = 1 a n d a  = el + 2 y ,  wehave  

al*v(ot) = E ~ d a  (el + 2y  - 13) v(/3) = (a~v)  (y) .  

Suppose n > 1 and (i) has been verified for n - 1. For ot = el + 2oq, where el �9 {0, 1} and Ul �9 Z, 
by the iteration relation (3.4) we have 

E a n ( a  - / 3 ) v ( / 3 ) = E E a n _ l ( q ) a ( ~  --/3 - 2 q ) v ( / 3 )  
~ Z  ~ Z  tmZ 

= Z an- l (~ -- 17) Z a (el + 20 --/3) 0(/3) = ( a n - l *  (Aelv))(or1) . 

Suppose oq = e2 + ".. + 2n-2en 4- 2 n-17. Then by the induction hypothesis we have 

an*V(a) = ( a n - l *  (Ae, v)) (Otl) = (A~ . . . .Ae2 ) (Ae ,  v) (y) = Ae, .. .Ae, v(y) , 

as desired. [ ]  

By  Lemma  2, for j �9 Z we have 

II -a" J))ll  = I la .*(o( -  = Ilan*vllp = 11.4" 11  

Let W be the linear span of {Vv(- - j )  : j �9 Z}. In other words, w �9 W if and only if w is a (finite) 
linear combination of Vv(.  - j ) ,  j �9 Z. For w �9 W, by (3.1) we see that there exists a positive 
constant C independent of  n such that 

II II < c A-I V n �9 N ,  (3.5) Ant/) p -  V(Vv) p 

where V(Vv)  denotes the minimal common invariant subspace of Ao and A1 generated by Vv. 
We will need to use the following lemma in this and the next section. 

Lemma 3. 
Suppose 1 < p <_ oo. Let ep �9 L1 (R) be the normalized solution of the refinement equa- 

tion (1.1) and let v(ot) :=  qb*Bm(ot), ot~ Z. Then 

(i) an*( Vkv)(~ = fR Bm(x)Vg_,r - x ) / 2  n) dx, and 
(ii) [[an*(Vkv)[[p <_ 2n/p][vg_,dp[[p. 

P r o o f .  We only prove the case k = 1. The general case can  be proved in the same way. A 
repeated use of  the refinement equation (1.1) gives 

dp(x/2 n) = ,...,~-" zan(/3)q~(x -/3), x �9 R .  

Hence, for ot �9 Z we have 

= 

=/'_. Bin(or - x )  Zan(/3)dp(x - /3)  dx = Zan( /3 )  /_ Bin(or - /3  -x)q~(x, dx 
d~ d~ 

E an(/3)V(Ot --/3) = an*V(~). 
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It follows that 

/ ,  
an*(Vv)(ot) = 7R Bm(x)V2-~r ((or - x) /2  n) dx,  ote  Z .  (3.6) 

Thus, for p = oo we obtain 

--< llV2-"r fR Sm(x)dx  = IlV2-.r �9 Ilan*(Vv) lloo 

Consider the case 1 _< p < oo. Let q be the number conjugate to p, i.e., 1/p + 1/q = 1. Applying 
the HOlder inequality to (3.6), we obtain 

l a n * ( V v ) ( o t ) l < ( f R B m ( x ) d x ) I / q ( f R B m ( x ) t V 2 - n r  

( / ~  ) ' "  = B , . ( ~  - x )  IVu-.r e d,, 

Since the shifts of Brn form a partition of unity, it follows that 

(~ ) lip (S~, 
Ilan*(Vv)llp = lan*(Vv)(o01 p _< IV: - , r  d x ]  l lp~ = 2 "1" IIV2--r �9 

This completes the proof of the lemma. [ ]  

L e m m a  4. 
Let/~(z) = 2-m(1 + z)m[l(Z), and let v be an element in s such that TbV = v. Then for 

~(z) = 2-k-m(1 + Z)tc+ms k = O, 1 . . . . .  we have Ta(Vku) = 2-kVkv.  

Proof .  We first consider the case k = 0, i.e., u0 (z) = 2 -m( l  + Z) m ~ (z). By the definition of b 
we have 

j=0 

Since Tbv = v ,  i t  follows that 

" (7) v(ot) = E b(2ot - fl)v(fl) = E E 2- 'n a(2ot - fl - j)v(fl)  = Tauo(vt), ot e Z . 
fleZ fleZ j=0 

Hence, Tauo = v. For k > 0, the symbol of Vku is 

- z)k(1 + z ) k + ~ ( z )  = 2 -k (1 - z2) k ~o(z) .  2-k-m(1 

It follows that Vku = 2-kV2~u0. Therefore, we have 

The proof of Lemma 4 is complete. [ ]  

We are in a position to give a characterization for the existence of Lp solutions and continuous 
solutions of refinement equations. 
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T h e o r e m  3. 
Let m be a positive integer such that the transition operator Tb induced by b(z) := ~(z)(1 + 

z)m /2  m has 1 as its simple eigenvalue. Let v be an eigenvector Of Tb corresponding to eigenvalue 
1. Then (1.1) has a nontrivial compactly supported L p solution dp (continuous solution in the case 
p = cx)) i f  and only i f  

Pp (AoIv(w) ,  AIIv(w))  < 21/P �9 (3.7) 

Proof .  Let ~b be the normalized solution of the refinement equation (1.1). Suppose ~b belongs to 
Lp(]~) (r is continuous in the case p = c~). Let v be given by 

V(Ot) := (dp*Bm) (~), Ot E Z ,  

where Bm is the cardinal B-spline of order m. It is easily seen that q~*Bm is continuous and refinable 
with b as its mask. Hence, 

v(ot) = E 3 ~ z  b(3)v(2ot - 3) = E ~ z  b(2ot - 3)v(3)  u  6 Z .  

In other words, TbV = v. Since the shifts of Bm form a partition of unity, we have 

etEZ 

Hence, v is an eigenvector of Tb corresponding to eigenvalue 1. Clearly, II V2-,~ II p converges to 0 
as n goes to oo. By Lemma 3 we have 

lim 2 -nIp Ilan*(Vv)llp = 0 .  (3.8) 
n-,oo 

Let Pp := Pp(A01v(Vv), AIIV(Vo))- Then pp < IIAnlv(vo) lllp/n for all n. By (3.1) and Lemma 2, 
this yields 

n < Anl p < c [[An(Vv)llp PP -- V(Vv) - = C Ila~*(Vv)llp , 

where C is a constant independent of n. Taking (3.8) into account, we deduce that 

(2 -1 /Ppp)  n p lim = lim 2-n /pp  = 0 .  
n---~ O0 n---~ O0 

Therefore, we must have 2-1/ppp < 1, i.e., pp < 21/p. Thus, we have established the necessity 
part of the theorem. 

It remains to establish the sufficiency part of the theorem. By our assumption,/~(z) = ~ (z) (1 + 
z )m/2  m and Tb has 1 as its simple eigenvalue. Let v be an eigenvector of Tb corresponding to 
eigenvalue 1. In light of the discussions in Section 2, we have ~ a ~ z  v(a)  ~ 0. Thus, without loss 
of any generality, we may assume that ff~acz v(ot) = 1. Let u be the sequence on Z given by 

m(:) 
:= 2-m E v(3  -- j ) '  u ( 3 )  

j=0 
3 e Z .  

Then the symbol of u is t~(z) = 2-m(1 + z)mf)(Z). Hence, we have Aou = Tau = v, by Lemma 4. 
Let us consider the case 1 < p < oo first. The initial function r is chosen as 

~b0(x) := E 3 e Z  u(3)B1 (x - 3), x E • ,  
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where B1 = X[o,1). Since Y-]~e7, u(/3) = 1, we have q~0(0) = 1. It follows that 

(Q--'~o) ( o ) =  E a ~ z  a(ot)~o(O)/2 = 1.  
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For n = 1, 2 . . . . .  set ~n := Qan4~0. Then q~n(0) = 1 for n = 1, 2 . . . . .  We wish to show that 
(~bn)n=l,2,... converges in the L p - n o r m .  For this purpose, we observe that 

C~n(X) = E an(Ot)d?O (2 n x - or) = E E an(Ot)u( /3)B1 (2 n x - o~ - / 3 ) .  
a~Z a~Z/3~Z 

Consequently, 

dpn(X) = E # e Z  (an*U)  (/3)B1 ( 2 n x  -/3) �9 

Since B1 (x) = B1 (2x) + B1 (2x - 1), we have 

q b n ( X ) = E ( a n * U ) ( O t ) ( n l ( 2 n + l x - 2 o t ) + B l ( 2 n + l x - 2 o t - 1 ) )  �9 
ct6Z 

Moreover, 

~bn+l(X) = E (an+l*U)(2~ ( 2n+lx --2or)-t'- E (an+l*U)(2~ -t-1)B1 (2n+lx- 2or-1) . 
a~Z asZ 

Subtracting the first equation from the second, we obtain 

q~n+l(X)--~n(X) = EW0,n(ot)Bl (2n+lx - 2or) "1- EtOl,n(ot)B1 (2n+lx- 20t- 1) , 
aEZ cr 

where 

and 

It follows that 

WO,n(Ot) :=  ( a n + l ' U )  (2o0 - (an*U)  (or) 

Wl,n(O0 := ( a n + l ' U )  (2or + 1) -- (an*U) (or) . 

I[~bn+l--~nllp ~ 21-(n+l)/p (llm0,nll  + IIw,,nl[ ) �9 (3.9) 

Let us estimate II W0,n II p and II W l,n II p. By (3.4), for oe e Z, 

( a n + l ' U )  (2o0 = ~ ~ a n ( y ) a ( 2 o t  - / 3  - 2y)u(/3) = a n *  ( A o u )  ( a )  . 

fl~Z y~Z 

Let w0 := A o u  - u .  Then 

IIw0,nll  = Ilan*wo]lp = IIAnw011p, 1 < p < o o .  ( 3 . 1 0 )  

Similarly, we have 

II w~,n II, = ]l-A"Wl II , ,  1 _< p < cx~, 

where o21 := A l u  - u .  By Lemma 4 we have A o u  = v.  Hence, 

m ( j )  
wo = A o u  - u = o - u = 2 - m  ~ [o - v ( .  - j ) ]  �9 

j=0 

(3.11) 
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This shows w0 ~ W, where W denotes the linear span of  {Vv(. - j )  : j ~ Z}. Furthermore, 

Wl = A l u  - u = ( A i  - Ao)  u + ( A o u  - u)  = A o ( u ( .  + l )  - u)  + ( A o u  - u)  . 

Clearly, u(. -I- 1) - u lies in W. Therefore, by (3.5) there exists a positive constant C1 independent 
of  n such that 

Iv(w) p < A"lv(v.) p- IIA"w011. _< c,  A" and [IAnAo(u(.+ 1 ) - u ) l l "  _ 

Suppose (3.7) is valid. By what has been proved, there exist a constant 6"2 > 0 and a constant t 
between 0 and i such that 

_ ( ) n  < C 2 ( 2 1 / P t )  n (3.12) ll 4nw0llp < c2 21 /p t  and I l A n w x ] [ p  _ 

hold true for all n = 1, 2 . . . . .  Combining (3.9)-(3.12) together, we see that there exists a constant 
C > 0 such that 

[ k b n + l  --r <-- C t  n, n = 1,2 . . . . .  

Since 0 < t < 1, this shows that there exists r ~ Lp(]R) such that I1r - Cl ip  --* 0 as n --* ~ .  

From Cn(0) = 1 we deduce q~(0) = 1, since all the functions r are supported in a common closed 
interval. 

For the case p = c~, we choose the initial function r to be ~ /~ez  u ( f l ) B 2 ( .  - [3). The 

existence of  continuous solutions can be proved in an analogous way. [ ]  

Let us apply Theorem 3 to the example mentioned in the beginning of this article. 

E x a m p l e  2. Let a be the sequence on Z given by its symbol 

h(z) ----- 1 - z + z 2 -I- z 3 - Z 4 --I- Z 5 �9 

Let r be the normalized solution of the refinement equation associated with the mask a.  Then r lies 
in Lp(]R)  for 1 < p < cx~, but r does not lie in C(]R). 

P r o o f .  The mask a is supported on [0, 5]. A simple computation gives 

spec (Tale([o,5])) = {2, - 2 ,  1, 1, 1, - 1 } .  

If  the sequence b is given by/~(z) = h(z)(1 + z)2/22, then 1 is a simple eigenvalue of  Tble([0,7]), by 
Lemma i. Indeed, we have 

spec (Zbl[0.7]) = {1, 1/2, 1/2, - -1/2 ,  1/4, 1/4, 1/4, - -1 /4} .  

We may identify e([0, 7]) with C 8. By computation we find that the vector 

v :=  [0, 1, 3, 5, 5, 3, 1, 0 ] r / 1 8  

satisfies Tbv = v and ~ ,~ez  v(ot) = 1. It follows that 

Vv = [0, 1 , 2 , 2 , 0 , - - 2 , - - 2 , - - 1 ] T / 1 8 .  

A simple computation yields 

w0 := A0(Vv) = [0, 1, 1, 1, - 1 ,  - 1 ,  - 1 ,  0 ] r / 1 8  

and 
W 1 :=  AI(VV) = [1, 1, 1 , - 1 , - - 1 , - - 1 ,  0, 0 ] T / 1 8 .  
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Moreover, 

[vv} [i li}[vv} A0 w0 = 0 w0 
to  1 0 1131 

and 

A 1 W0 ~--- 0 W 0 . 

Wl 0 Wl 

The above two 3 x 3 matrices are triangular, by [10, Lemma 4.8] and [16, Lemma 4.2] we obtain 

Pp (A01v(vo), Allv(vo)) = 1, 1 < p < ex~. 

Since 1 < 21/p for 1 < p < ex~, by Lemma 3 we conclude that q~ lies in Lp(R). But r is not 
continuous. [ ]  

The following example shows that the invariant subspace V(Vo) in Theorem 3 may be a proper 
subspace of U given by (1.4), even if the shifts of ~b are stable. 

E x a m p l e  3. Let a be the sequence on Z given by its symbol 

15 3 1 2 1 3 1 4 
= + + + - . 

Let ~b be the normalized solution of the refinement equation associated with the mask a. Then ~b is 
continuous. Choose m = 1 in Theorem 3. Then dimV (Vv) = 2. Hence V(Vv) is a proper subspace 
of U given by (1.4). Moreover, the shifts of ~ are stable. 

Proof .  The mask a is supported on [0, 4]. A simple computation gives 

spec (Tale([o,4])) = {1, 15/16, 1 / 8 , - 1 / 1 6 ,  0}. 

If the sequence b is given by/~(z) = h(z)(1 + z)/2, then 1 is a simple eigenvalue of Tble([0,s]), by 
Lernma 1. Indeed, we have 

spec (Tbl[0,S]) = {1, 1/2, 15/32, 1/16, --1/32, 0}. 

We may identify s 5]) with C 6. By computation we find that the vector 

is := [0, 3/4, 1/4, 0, 0, 0] r 

satisfies TbV = v and )-'~:a~z v(t~) = 1. It follows that 

Vo = [0, 314, - 1 / 2 ,  - 1 / 4 ,  0, 0 ]  T . 

A simple computation yields 
1 

AO(VO) = ~Vv 

and 
Al(Vv) = [45/64, -33 /64 ,  -13 /64 ,  1/64, 0, 0 ]  r . 

Moreover, span{Vv, Al(Vv)} is invariant under A0 and A1. This is the subspace V(Vv). If we 
choose a basis as {Vv, w :----- 8A1 (Vv)}, then 
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and 

A1 I ? ]  = [1716 1/861 [ ? ] "  

Take the norm of the above two 2 • 2 matrices as the maximum of the sums of each column. Then 

Poo (aolv(vv),  allv(vo)) < max 111 a01vCvo)ll, II a lvr = 15/16. 

since poo(Aolv(vv), A1 Iv(w)) < 1, by Lemma 3 we conclude that ~ is continuous. Note that 
dim V(Vv) = 2, while dim U = 3 in this example. Then V(Vv) is a proper subspace of U. 

Observe that the symbol of the mask can be factorized as 

t~(z) = (1 + z)(5 - z) (3 + z 2 ) / 1 6 .  

By the criteria on stability and linear independence in [18], the shifts of ~ are stable, but linearly 
dependent. [ ]  

4. Characterization of Lp Regularity 

In this section we give a characterization for the regularity of a refinable function in terms of 
the corresponding refinement mask. 

Let a e s be a refinement mask such that )--~.a~z a(ot) = 2. Recall that A~ (e --- 0, 1) are 
the linear operators defined in (1.3). 

Theorem 4. 
Suppose the normalized solution dp of the refinement equation (1.1) with mask a lies in 

Lp(R). Let m be a positive integer such that the transition operator Tb induced by [ffz) := a(z) 
(1 + z)m/2 m has 1 as its simple eigenvalue. Let o be the element in s such that Tbo = v and 
~ e Z  v(ot) = 1. Let k be the smaUest positive integer such that 

k > 1/p - log2p p (Aolv(vko), A11v(vko)) , 

where V(Vkv) denotes the minimal common invariant subspace of Ao and AI generated by Vkv. 
Then 

vp(dp) = 1/p - log 2 pp ( AoIv(vk,) , Allv(vgo)) �9 (4.1) 

Proof .  Let us prove the theorem for 1 < p < ~x~. The case p = oo can be treated similarly. 
Write Pp,k for pp (AoIv(vko), At I V(Vko)). Since V k+l v = Vkv--V k v(.-- 1), we have Pp,k+l < 

Pp,k for k = 1, 2 . . . . .  We shall first establish the following fact: 

1/p - log 2 Pp,k > k - 1 ~, Vp(q~) > 1/p -- log 2 Pp,k Vk ~ N.  (4.2) 

Fix a positive integer k. Suppose 1/p - log 2 Pp,k > k - 1. Let w be the element in s 
given by 

k+m--1 
W(1~) ~_ 21_k_m ~ (k  + m - l )  v(fl _ j ) ,  f i z z  

j=0 J 

Then the symbol of w is tb(z) := ~(z)(1 + z) k+m-1/2 k+m-1 . By Lemma 4 we have A0(V k-1 w) = 
T~(V k-1 w) = 21-kv k-1 v. The initial function ~0 is chosen as 

q~O(X) := E a ~ Z  w(ot)Bk(x -- or), x E R ,  
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where Bk is the cardinal B-spline of  order k. For n = 1, 2 . . . . .  let ~bn : =  Qan~b0. It was proved in 
Section 3 that 

(bn (x) = ~"~'~Z (an*w) (or)Bk (2n x -- or) , (4.3) 

where an is given by (3.4). From the proof of  Theorem 3 we see that (r .... converges to ~ in 
the Lp-norm. Differentiating both sides of  (4.3) k - 1 times, we obtain 

t C p ( k - 1 ) ( X ) = 2 n ( k - l ' ~ - ' ~ . a ~ z ( a n . ( v k - l w ) ) ( c t ) B l ( 2 n X - - O t )  , (4.4) 

!/(k-l) = v k - l B 1  where we have used the fact "-'k 
As was done in the proof of  Theorem 3, the following estimate can be derived from (4.4): 

~ ( k - , ) -  ~b(k_a) < c12n(k_l)_n/p (llAnw011~ + IIA"w, I1~) (4.5) n+l p - 

where C1 is a positive constant independent of  n, 

w o : = 2 k - l a o ( V k - l w ) - - v k - l w  and w l : = 2 k - l a l ( v k - l w ) - - v k - l w .  

Let W be the linear span of  {Vkv( �9 - j )  : j ~ Z}. For w e W, we have the following estimate 
similar to (3.5): 

IIAnwll~ _ C= ~nlv~v~o~ Vn e N .  (4.6) 
p 

Since 2 k - l A o ( V k - l w )  = v k - l v ,  we have 

k+m-1 

j=0 J 

This shows that wo lies in W. Furthermore, 

= 2 k-1 (Al - Ao) v k - l w  + 2 k- lA0 ( v k - l w )  -- v k - l w  Wl 

: 2 k - l A o ( V k - l w ( . q - 1 ) - - v k - l w ) - I - ( V g - l v - - v k - l w )  . 

Clearly, Vg- lw( .  + 1) -- V k - l w  lies in W. Note that Pp,k = pp(AoIv(vko), AI Iv(vko)). For given 
e > 0, in light of  (4.6), there exists a positive constant C3 such that 

11"4n~oll~ + 11 ~4nw, lie --< c~ (p~,k + ~)n Vn = 1,2 . . . . .  (4.7) 

Combining (4.5) and (4.7) together, we see that there exists a positive constant C independent of  n 
such that 

(k-l) -1) < c2n(k- l -1/P)  (Pp,k -t- e) n = C2 -Izn (4.8) ~+,  _ ~ k  ~ _ 

where/z  :=  1/p  - (k - 1) - log2(pp,k -I- e). Since l / p  - log 2 Pp,k > k - 1, we have/z  > 0 if 

e > 0 is sufficiently small. Thus, (4.8) tells us that r ,vn )n=l,2,... is a Cauchy sequence in Lp (R). 

There exists g ~ Lp (R)  such that I1r k-l) - gllp ~ 0 as n ~ oo. But (q~n)n=l,2 .... converges to q~ 
in Lp(]R), so we must have g = ~b (k-l). 
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We claim that ~b (k-l) belongs to Lip*(bt, L p ( R ) ) .  To justify our claim, we deduce from (4.4) 
that 

V 2 - , d p ( k - l ' ( x ) = 2 n ( k - 1 ) E o t ~ z ( a n * ( V k w ) ) ( o t ) B l ( 2 n x - - o t  ) . 

In what follows, C1, C2, C3, and C denote positive constants independent of n. Since V k w  lies in 
W, by (4.6) the following estimate is valid: 

1,11  ,49, 
It follows from (4.8) and (4.9) that 

' ~  p - -  .t n ~ + t  - - - - J  

C12 -t~n Jr 2C2 E ~ 2 -~j < C3 2-t~n �9 < 
- -  j . ~ - n  - -  

Suppose 
1 dl d2 

h = 2---k + 2--y~- + 2--~-~ + . . . .  

where dl, d2, . . .  ~ {0, 1 }. By what has been proved, we have 

p - -  j = n  - -  

This shows that ~b (k-O belongs to Lip*(g, L p ) .  Hence, 

Vp(dp) > k - l + tz = 1 ~ p - l o g  2 ( p p , k + e )  . 

Letting e --> 0 in the above inequality, we obtain Vp(Cb) >_ 1 / p  - log 2 Pp,k, as desired. 
From the preceding discussion we see that l i p  - log 2 Pp,k >_ k implies Vp(q~) > k. But 

vp(dp) < c~. Hence, there exists a positive integer k such that 

k > i / p  - log 2 Pp,k �9 

Let k be the smallest positive integer satisfying the above inequality. We claim that Vp(ep) >_ 

1 / p  - logzpp ,k .  By our assumption, q~ E Lp(~);  hence l i p  - logzpp, 1 > 0 = 1 - 1, by 
Theorem 3. Thus, if k = 1, it follows from (4.2) that Vp(d?) >_ 1 / p  - log 2 Pp,1. Suppose k _> 2. 
Then by the very definition ofk  we have l i p  - log 2 Pp,k-1 >_ k - 1. If Pp,k < Pp,k-1,  then 

1 / p  - log 2 Pp,k > 1 / p  - log 2 Pp,k-1 >_ k -- 1 .  

Hence, by (4.2) we obtain Vp(dp) > 1 / p  - log 2 Pp,k. Otherwise, we have Pp,k = Pp,k-1.  Since 
1 / p  - log 2 Pp,k-1 > ( k  - 1) - 1, in light of (4.2) we have 

Vp(dp) > 1 / p  - log 2 Pp,k-1 = 1 / p  -- log 2 Pp,k �9 

In order to complete the proof of (4.1), it remains to prove Vp(Cb) <_ 1 / p  - log 2 #p,k. Suppose 
to the contrary that Vp(~) > l i p  - log 2 Pp,k. Then there exists/z such that 

min {k, ve(4~) } > / z  > 1 / p  - l o g  2 P p , k  �9 (4.10) 

It follows from Vp(dp) > / z  that ~b ~ Lip*(#, L p ( R ) ) .  Consequently, 

vk_ndp <_ C12 -nt~ . 
P 
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From the proof of Theorem 3 we have v(ot) = (q~*Bm)(Ot) for all ot ~ Z. Hence, by Lemma 3 we 
obtain 

an* ( V k v )  p < 2  n/p vk-nqb p < C22n(1/p-lO �9 

By Lemma 2 we have II.An(vkv)ll p = Ilan,(Vkv) llp. Therefore, 

Pp ( Aolv(vkv) , allv(vko)) = lim A n (vko)  1/n <_ 21/P-I z " 
n---~ oo p 

In other words, log 2 Pp,k <-- 1/p -- Iz, which contradicts (4.10). The proof of Theorem 4 is complete. 
[] 

The Lp regularity ofrefinable functions was considered by many authors. Usually, it is assumed 
that the shifts of the refinable function ~b are stable. See [14] and [18] for discussions on stability 
of compactly supported functions. Under the stability condition on q~, Villemoes [26] employed the 
factorization technique to provide a characterization for the Lp regularity of the refinable function 
~b in terms of the spectral radius of a certain subdivision operator associated to the corresponding 
mask a. In [13] Jia used the p-norm joint spectral radius to investigate the Lp regularity of ~b. 
Without stability condition imposed on 4,, Lau and Ma in [21] provided a characterization of the 
Lp regularity of ~b in terms of the mask. But they still required that 1 be a simple eigenvalue of the 
transition operator Ta. Example 2 demonstrates that this condition might fail to hold in some cases. 

The case p = 2 is of particular interest. It was observed by Deslauriers and Dubuc [5] that 
the optimal Lipschitz exponent of a refinable function ~b can be computed by calculating the spectral 
radius of a certain finite matrix associated with the mask a, provided the symbol of the mask is 
non-negative. Their idea was employed by Eirola [7] and Villemoes [26] to give a formula for v2(~b) 
when the shifts of tp are stable. In [8], Goodman, Micchelli, and Ward established a formula for the 
spectral radius of the subdivision operator Sa in s Lau, Ma, and Wang [22] gave sharp estimates 
for the L2 regularity of refinable functions. Recently, motivated by the work of Lau and Ma in [21], 
Zhou [31] showed that the 2-norm joint spectral radius of a finite collection of square matrices is 
equal to the spectral radius of a certain finite matrix derived from the given matrices. 

Here we give a brief discussion on the L2 regularity of a refinable function without the stability 
condition. Our discussion is based on the work [9]. For two elements u, v in •0(Z), uQv is the 
sequence on Z given by 

u| := y~ u(a + t~)v(~), ~ e Z .  #eZ 

Let 4, be the normalized solution of the refinement equation (1.1) with mask a. Define c := a (3a/2. 
Then Tc is the transition operator associated with c. Let v be the element in s as given in 
Theorem 4. For a positive integer k, let Wk be the minimal invariant subspace of Tc generated by 
Akw, where w := vQv. Then we have 

1 
V2(~b) ---- --2 l~ p (Tciwk) , 

provided k > - log 2 p(TcIWk)/2. 
Let us show the applicability of our characterization on the regularity without assuming stability 

by a simple example. 

E x a m p l e  4. Let a be the sequence on Z given by its symbol 

3 1 1 2 1 3 1 4 a(z)=~+~z+~z +~z -~z . 

Let tp be the normalized solution of the refinement equation associated with the mask a. Then 4, is 
continuous. The shifts of tp are not stable. The critical exponent of 4) is given by 

vp(q~)=2+--I _ l l o g  2(3 p + l ) ,  l _ < p < o o .  
P P 
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The method is the same as that in Example 3. The mask a is supported on [0, 4] and 

spec (Tale([o,4])) ---- { 1, 3/4, 1/2, - 1/4, 0}. 

If the sequence b is given by/~(z) --- h(z)(1 + z)/2, then by Lemma 1, 1 is a simple eigenvalue of 
Zb le([o,5]) and 

spec (Tbl[0,5]) = [1, 1/2, 3/8, 1 /4 , - -1 /8 ,  0}. 

We may identify s 5]) with C 6. By computation we find that the vector 

v := [0, 1/2, 1/2, 0, 0, 0] T 

satisfies Tbv = v and ff ' ]~z o(ot) = 1. It follows that 

Vv = [0, 1/2, 0, - 1 / 2 ,  0, 0] r . 

A simple computation yields 

and 

Ao(Vv) = 1Vv 
2 

AI(Vv) = [3/8, - 1 / 8 ,  - 3 / 8 ,  1/8, 0, 0] T . 

Moreover, span{Vv, AI(VV)} is invariant under A0 and A1. This is the subspace V(Vv). If we 
choose a basis as {Vv, w := A1 (Vv) - Vv/2}, then 

and 

A~ IVwV] = [102 3~41 [ ?  1 

Then Theorem 4 shows that 

1 1 
Vp(q~) = 2 + -- -- -- log 2 (3 p + 1), 1 < p _< ~x). 

P P 

The above two 2 x 2 matrices are triangular, by [10, Lemma 4.8] and [16, Lemma 4.2] we obtain 

Pp (aolv(Vv) ,  A l l y (w) )  = max {21/p-l, (3 p + 1) 1/p/4]  = (3 p + 1) 1/p/4,  1 < p < oo.  

In particular, poo(Aolv(vv), AI Iv(w)) = 3/4 < 1. By Lemma 3 we conclude that q~ is continuous. 
Note that ~(i) = ~ ( - i )  = 0. Hence h has symmetric zeros on the unit circle. The criterion 

on stability given in [18] tells us that the shifts of q~ are not stable. 
Take k = 1 in Theorem 4. We know that for p > 1, 

1/p - log2p p (Aolv(w) ,  AIIV(Vv)) < 1. 

Notice that 0 < vp(dp) < 1 for 1 < p < oo. The case p = 1 follows from the argument in [17]. 
This proves all the conclusions. [ ]  

Note again that dimV(Vv) = 2, while dimU = 3 in this example. Then V(Vv) is a proper 
subspace of U. 

[1 2 
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5.  V e c t o r  R e f i n e m e n t  E q u a t i o n s  

The results of the previous sections can be extended to vector refinement equations. 
A vector refinement equation is a functional equation of the form 

~b(x) = Z a ~ z  a(~)4~(2x - ~ ) ,  x ~ • ,  (5.1) 

where 4~ = (~bl . . . . .  q~r) r is an r x 1 vector of functions on R, and each a(ot) is an r • r (complex) 
matrix. 

The existence of compactly supported distributional solutions of the vector refinement equa- 
tion (5.1) was discussed by Heil and Colella [11], and by Cohen, Daubechies, and Plonka [2]. Here 
we assume that the matrix M := Y ] ~ 2  a(ot)/2 has 1 as its simple eigenvalue and does not have 
eigenvalues of the form 2 n for any positive integer n. Let y be a right eigenvector of M corresponding 
to eigenvalue 1. Then there exists a unique compactly supported distributional solution ~b of (5.1) 
subject to the condition q~(0) = y. This result was established by Zhou [30] for the case r --- 2, and 
by Jiang and Shen [20] for the general case. 

Let (~0(Z)) r denote the linear space of all finitely supported sequences of r x 1 vectors. 
Similarly, we define (s T M  to be the linear space of all finitely supported sequences of r • r 
matrices. For v ~ (e0(Z)) r, define Vv := v - v(. - 1). 

Let a be an element of (Co(Z)) r• For e 6 {0, 1}, let Ae be the linear operator on (s r 
given by 

A~v(ot) = E ~ e Z  a(e + 2or - fl)v(fl), ot ~ Z, v ~ (s r . (5.2) 

By V(v) we denote the minimal common invariant subspace of Ao and A1 generated by v. We write 
Ta for A0 and call it the transition operator associated with a. 

For a ~ (~0(Z)) rxr, its symbol is defined by 

E j ~ Z  a(J)zJ' a(z) := z ~ C \ {0}. 

Let b be the mask given by b (z) = fi (z) (1 + z) m/2 m, where m is a positive integer. If m is sufficiently 
large, then the transition operator Tb has 1 as its simple eigenvalue. 

Concerning Lp solutions and Lp regularity of solutions of vector refinement equations, we 
state the following two results. Their proofs are similar to those of Theorem 3 and Theorem 4. 

Theorem 5. 

Let m be a positive integer such that the transition operator Tb induced by f~(z) := fi(z) 
(1 -k- z)m/2 m has 1 as its simple eigenvalue. Let y be a nonzero r x 1 vector such that My = y. 
Then (5.1) has a compactly supported Lp solution d? (continuous solution in the case p = oo) with 

~(0) = y if and only if the element v in (s r determined by TbV = v and ~ e Z  v(ot) = y 
satisfies the following condition: 

Pp ( Aolv(vv) , A1 [vtvv)) < 21/P �9 

Theorem 6. 

Suppose the conditions of Theorem 5 are satisfied. Let k be the smallest positive integer such 
that k > 1/p - log 2 pp(Aolv(vk~), A11vcvk~)). Then 

Vp(qb) = 1/p - log 2 pp ( AoIv(vkv) , AIIV(Vkv)) �9 

Under the stability condition on 4~, Jia, Riemenschneider, and Zhou [17] characterized the 
Lp regularity of ~b in terms of the p-norm joint spectral radius of A0 and A1 restricted to a certain 
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common invariant subspace. Stability and linear independence of refinable vectors of functions 
were discussed by Hogan [12] and Wang [27]. However, it is still difficult to check stability or linear 
independence of a refinable vector of functions in terms of the corresponding mask. In Theorem 6, 
the Lp regularity of ~ was characterized without any consideration of stability. Therefore, it has 
significant advantages over the previous results. 

We demonstrate applicability of Theorems 5 and 6 by the following example. 

E x a m p l e  5. Let a 6 (g0(Z)) 2• be supported in [0, 2] and given by 

a(O)={l~2 s12 ] {10 0 ] a(2)=[1/~ --s12 ] 
l / 4 + 2 s t  ' a(1) = 1/2 ' 1 / 4 + 2 s t  ' ($,3) 

where s, t are real parameters satisfying t ~ 0 and 1/2 + 2st f[ {2 n-1 : n ~ N}. Then M = [a(0) + 
a(1) -t-a(2)]/2 has 1 as its simple eigenvalue and an associated eigenvector y = (1, 0) T. Moreover, 
M has no eigenvalues of the form 2 n, n E N. Let ~b be the compactly supported distributional 
solution of the vector refinement equation (5.1) subject to the condition q~(0) = y. Then 4b is in Lp 
(continuous in the case p = oo) if and only if - 3 / 4  < st < 1/4. In this case, the critical exponent 
of ~ is given by 

2 +  

Vp(gp)= --log 2 � 8 9  

1 +  l ip  

if Ist + 1/41 < 2 -3-1/p and s g= 0 ,  

if 2 -3-1/p < ist + 1/41 < 1/2 and s g: 0 ,  

if s = 0 .  

This example was discussed in [16] and [17]. Under the restriction ]st + 1/41 < 1/2, i.e., 
- 3 / 4  < st < 1/4, it was proved in [16, Example 6.3] that the subdivision scheme associated with a 
converges uniformly. Consequently, the solution ~b is continuous. But the question was not answered 
whether the soltuion ~b is in Lp if [st + 1/41 > 1/2. Under the restriction - 3 / 4  < st < 1/4, the 
smoothness of r was analyzed in [17, Example 4.2] by considering the stable and nonstable cases 
separately. In contrast, Theorem 5 and Theorem 6 enable us to give a unified approach for the 
existence and smoothness of the solution without the restriction on the parameters. 

Proof ,  Let m = 1 and/ffz) = a(z)(1 + z)/2. Then 1 is a simple eigenvalue of Tb. The element 
v ~ (s 2 determined by TbV = v and Y~a~z v(o0 = y = (1, 0) T is supported in [1, 2] and given 
by 

1- 1/2-] 1-112 "1 v(1) = L2t/3/, v(2) = L_2t/3.] . 

Since a is supported in [0, 2], (s 3])) 2 is invariant under A0 and A1. By acting A0 and 
Ai iteratively on Vv ~ (s 3])) 2, we find that the elements Vv, AoVv, A1Vv, A2Vv, A2Vv and 
AoA1Vv generate an invariant subspace of A0 and A1. This is the subspace V(Vv). The elements 
form a basis of V(Vv) when s # 0, while the first five elements form a basis when s = 0. 

Let us choose a basis of V(Vv) (when s g= 0) as 
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Let V = [vl, v2, 03, 04, v 5, 06]. Then we have 

A o V = V  

- 1 / 2 + 2 s t  s/2 0 0 - s / 2  -2st~3 
0 1/4 t 0 0 2t 
0 0 1/2 0 0 1/2 
0 0 0 1~2+2st - s / 2  1 / 2 - 2 s t / 3  
0 0 0 0 1/4 2t 
0 0 0 0 0 0 

(5.4) 

and 

A 1 V = V  

"1/2+2st - s / 2  0 0 s/2 2st/3 
0 1/4 - t  0 1/4 5 t / 3  
0 0 1/2 0 0 1/2 
0 0 0 0 0 1/4 + st~3 
0 0 0 0 0 t/3 
0 0 0 0 0 0 

(5.5) 

and 

A o W = W  

-1~2+2st 0 s 0 2s -8st~3 
0 1/2+2st  - s / 2  1/2 -3s /2  4st 
0 0 1/4 - t  1/4 - 4 t / 3 - 3 2 s t 2 / 3  
0 0 0 0 0 -4st~3 
0 0 0 0 0 4t/3+16st2/3 
0 0 0 0 0 0 

A 1 W = W  

7 1 / 2 + 2 s t  0 - s  0 -2s  8st~3 
0 0 0 - 1 / 2  s/2 -8st~3 
0 0 0 - t  - 1 / 4  4t/3+8st2/3 
0 0 0 0 0 1~4+st~3 
0 0 0 0 0 -2 t /3  - 4st2/3 
0 0 0 0 0 0 

(5.6) 

(5.7) 

When s ~ 0, the matrix representations of Aolv(vv) and AI Iv(vu) under the basis {v j}6=1 are the 
matrices on the right side of (5.4) and (5.5). When s = 0, the matrix representations under the basis 
{vj }6=2 are the submatrices by deleting the first rows and columns of these matrices. Thus we have 

Pp ( aolvfvv) , Ally(w)) = { 
max {21/pll/2 + 2stl,21/p-1} , i f s  r  
max{l l /2+2st[ ,21/p-1}=2 I /p- l ,  if s = 0 .  

Therefore, by Theorem 5, the vector refinement equation (5.1) has a compactly supported L p solution 

~b (continuous solution in the case p = ~ )  with q~ (0) = y if and only if I 1/2 + 2stl < 1 when s ~: 0, 
i . e . , - 3 / 4  < st < 1/4. 

To analyze the smoothness of tp, we take k = 3 and generate the subspace V(V3v). By acting 
A0 and A l iteratively on V 3 o, we see that the linear span of the vectors { V 3 v, Ao V3 v, A 1V 3 v, A2V 3 v, 

AoA1V3v, A2V3v} is invariant under both A0 and A1. This is V(V3v). Moreover, these 6 vectors 
form a basis of V(V3v), while A2V3o = 0 and the remaining 5 vectors form a basis when s = 0. 

Choose the following vectors 

w 4 : =  e 1V38,  w 5 :----- e2V38,  to 6 : =  V 3 O .  

Then {wj}~= 1 form a basis of V(V3v) when s ~: 0, while {wj}~= 2 form a basis when s = 0. 
Moreover, with W = [Wl, w2, w3, w4, ws, w6], we have 
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When s # 0, the matrix representations of Aolv(v3v)  and A llv(v3v) under the basis {wj }6=i are the 
matrices on the right side of (5.6) and (5.7). When s = 0, the matrix representations under the basis 
{wj }~=2 are the submatrices obtained by deleting the first row and the first column of each matrix. 
Thus we have 

max {21/Pl l /2+2st l ,  1/4}, if s # 0 ,  
Pp (A0lv(vav), Allv(x730) ) = max{l 1/2 + 2stl, 1/4} = 1/2, if s = 0 .  

It follows that for s # 0, p > 1, 

1/p - log 2 pp (A0Jv(v3v), Allv(v3v)) < 1/p - 1og2(1/4) = 2 + 1/p < 3. 

When s = 0, 1/p - log 2 pp(Aolv(v3v), A1 [v(v3v)) = 1 + 1/p < 3. By Theorem 6, we have 

2 + 1  if I s t + 1 / 4 1 < 2  - 3 - 1 / p , p >  l a n d s # 0 ,  
I I 

Up(b) = - log2 [�89 + 2st] if 2 -3-1/p < Ist + 1/41 < 1/2,  p > 1 and s # 0 ,  

1 + 1/p i f  s = 0 .  

The case p = 1 follows from the argument in [17]. This completes the smoothness analysis. [ ]  

When s = 0, the solution ~b is not stable. This shows that Theorems 5 and 6 can be used to 
handle the existence and smoothness of  unstable refinable vectors of  functions. 
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