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We consider a generalized iterated function system where the weights are
variable functions. By using the Ruelle operator and a dynamical system considera-
tion we prove that if the system is contractive and the weights are strictly positive
functions and satisfy the Dini condition, then there exists a unique eigenmeasure
Ž .corresponding to the Ruelle operator on the attractor. If in addition the maps are
conformal and satisfy the open set condition, then we prove that they satisfy the
strong open set condition, and by using this we can give a description of the
L p-scaling spectrum and the multifractal structure of the eigenmeasure. The work

w Ž .extends some results of Proc. London Math. Soc. 73 1996 , 105]154; Ad¨ . Appl.
Ž . Ž .Math. 19 1997 , 486]513; J. Statist. Phys. 86 1997 , 233]275; Indiana Unï . Math.

Ž . xJ. 42 1993 , 367]411 . Q 1999 Academic Press

INTRODUCTION

Ž . � 4mLet X, d be a compact metric space, let w be a set of contractivej js1
� 4mmaps from X into X, and let p be a set of nonnegative continuousj js1

Ž � 4m � 4m .functions on X. We call the triple X, w , p a contractï e system.j js1 j js1
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This setup is a generalization of the usual iterated function system with
� 4mconstant probability weights or with variable weights p satisfying thej js1

m Ž . w xnormalization condition Ý p x s 1 1, 12 . In this paper, we arejs1 j
interested in the probability measures which are solutions of the equation,

m
y1lm s p x m(w . 0.1Ž . Ž .Ý j j

js1

Ž . Ž . Ž .For this we consider the Ruelle operator T : C X ª C X where C X
is the space of continuous functions on X and

m

Tf x s p w x f w x . 0.2Ž . Ž . Ž . Ž .Ž . Ž .Ý j j j
js1

Ž .The adjoint operator T* on the space of regular Borel measures M X is
given by

m
y1T*m s p x m(w .Ž .Ý j j

js1

Ž .It follows that the measure solution in 0.1 can be regarded as an
eigenvalue problem of the adjoint operator T*. We are particularly inter-
ested in the largest eigenvalue r, which corresponds to the spectral radius
of T*. We call log r the pressure of the system. The eigenmeasure
associated with r, when suitably normalized, is called the Gibbs measure.
Our first goal in this paper is to establish the fundamental existence and
uniqueness of the eigenmeasures under the condition that the p s arej
strictly positive and log p satisfy the Dini condition. In general, thej
existence is quite easy to obtain, but the uniqueness is more intricate. The
key idea of the proof is to relate this with a dynamical system on a

w xsymbolic space. Note that in 20 , Quas gave an example that the eigen-
measure is not unique if we just assume positivity and continuity on the

w xp s. In 9 , the existence and uniqueness of the eigenmeasure was discussedj
when the maps w s were just weakly contractive.j

We remark that an alternative approach to this eigenproblem is to use
w xthe theory of quasi-compact operators 11 . But then the Dini condition

w xdoes not work and the stronger Holder condition is needed. In 1 , there is¨
a probabilistic proof of the theorem but under a normalization hypothesis

Ž .Ý p x s 1 for all x g X. We see that even if we would like to study thej
Ž .system with the hypothesis Ý p x s 1, we are yet led to consider thej

others systems with weights for which the hypothesis is no longer valid.
w xStrichartz, Taylor, and Zhang 26 have also studied the problem here on
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w xX s 0, 1 using continuous w s only, but with a certain separation condi-j
¨ w xtion. A more detailed study along this line is given by Oberg 17 .

� 4m dIf w are contractive conformal maps on a domain of R , we call thej js1
corresponding eigenmeasure m a self-conformal measure. We study the

q Ž .multifractal formalism and the L -scaling spectrum t q of such measure
by making use of the Ruelle operator of the form,

m
q yaX< <T f x s p w x w x f w x ,Ž . Ž . Ž . Ž .Ž . Ž .Ýq , a j j j j

js1

< XŽ . < XŽ . d < XŽ . <1r dwhere w x is the operator norm of w x on R , and equals det w xj j j
� 4mbecause of the conformal property. Under the condition that wj js1

Ž .satisfies the open set condition see the definition in Section 2 and that
� 4 qlog p satisfies the Dini condition, we prove that the L -scalingj 1F jF m

Ž .spectrum t q is the unique a such that the spectral radius of T equalsq, a

Ž . Ž .1 Theorem 3.3 . The function t q is strictly convex and analytic. Its
Legendre transformation describes the multifractal structure of the self-

Ž .conformal measure Theorem 3.4 . In the case that the weights are
constant probability weights and the wX s are similarities with contractingj

Ž .ratio r , it is well known that t q s a satisfiesj

m
q yap r s 1,Ý j j

js1

which can be viewed as a special form of T 1 s 1.q, a

Ž .The proofs of the previous results on t q and on the multifractal
formalism are based on the so-called measure separated property in the

Ž Ž . Ž ..sense that m w K l w K s 0, i / j. By using the technique of Schiefi j
w x w x24 and Lau and Wang 13 , we show that the open set condition implies

Ž .the strong open set condition Lemma 2.6 and hence the measure sepa-
Ž .rated property Theorem 2.2 . This property allows us to establish a

one-to-one relationship between the attractor K and a symbolic space S
except for a m-zero set. Then the dynamical system on the symbolic space
applies.

w xThe self-conformal measures have also been studied by Strichartz 25 ,
w x w x w xMauldin and Urbanski 16 , Pesin and Weiss 19 , and Patzschke 18 . The´

w xtechnique in 25 is to use approximation by family of self-similar measures
w xwhile the other three make use of the Ruelle operator. In 16 , the setup is

for iterated function systems with a countable family of conformal maps
w xand the main interest is on the structure of the attractor. In 19 , the

consideration is on the conformal repelling system determined by a confor-
Ž y1mal map g on X the branches of g correspond to the contractive

.system , and a Moran-like iteration under a separation condition on the
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attractor which is stronger than the open set condition we use here. The
w xseparation assumption in 18 is a consequence of the open set condition as

is proved in Lemma 2.6.
The material of the paper is organized as follows. In Section 1, we use

the Ruelle]Perron]Frobenius theorem on the symbolic space to prove the
Ž � 4 � 4.existence and uniqueness of the Gibbs measure for X, w , p underj j

the assumption that the weight functions log p satisfy the Dini condition.j
We also establish the Gibbs property under the measure separation
property. In Section 2, we study the conformal iterated function system
with the open set condition and we prove that for such a system the

Ž .measure separation property holds Theorems 2.1 and 2.2 . We also
consider the Hausdorff measure HH s on the attractor as a self-conformal

w xmeasure. This result is known 16 but the proof here is quite natural
under the present setup and the assumption is slightly more general. In
Section 3, we consider the Lq-scaling spectrum and we prove the multifrac-

Ž .tal formalism for the self-conformal measures Theorems 3.3 and 3.4 .

1. TRANSFER OPERATOR AND GIBBS PROPERTY

� 4mLet w be a contractive iterated system on X. It is well known thatj js1
m Ž . w xthere exists a compact attractor K that satisfies K s D w K 10 . Thisjs1 j

Ž .invariance property allows us to restrict the operator T on C K and T*
Ž .on M K . For a function p: X ª R, we denote its modulus of continuity
Ž . � < Ž . Ž . < Ž . 4by V p, t s max p x y p y : d x, y F t .

Ž � 4 � 4.THEOREM 1.1. Suppose X, w , p is a contractï e system such thatj j

V log p , tŽ .1 j
dt - `, 1 F j F m.H t0

Ž .Let K be the attractor and let r be the spectral radius of T restricted to C K .
Ž .Then there exists a unique 0 - h g C K and a unique probability measure

Ž .m g M K such that

² :Th s rh , T*m s rm , m , h s 1.

Ž . yn n ² :Moreo¨er, for e¨ery f g C K , r T f con¨erges uniformly to m, f h, and
Ž . yn n ² :for e¨ery j g M K , r T* j con¨erges weakly to j , h m.

The measure m s hm is called the Gibbs measure of the system. The˜
condition of the modulus of continuity on log p is called the Dinii
condition. The special case for symbolic spaces is known as the Ruelle]

w xPerron]Frobenius Theorem 3, 8, 23 . We are going to prove Theorem 1.1
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as a consequence of this special case. Let us first introduce some nota-
Ž . � 4 < <tions. For a multi-index J s j , j , . . . , j with j g 1, 2, . . . , m , let J s1 2 n k

n denote the length of J and let

w s w (w ( ??? (w ,J j j j1 2 n

K s w K ,Ž .J J

p x s p x ??? p x ,Ž . Ž . Ž .J j j1 n

p x s p w ( ??? (w x ??? p w (w x p w x .Ž . Ž . Ž . Ž .w j j j j j j j jJ 1 1 n ny1 ny1 n n n

It follows by induction that

T n f x s p x f w x .Ž . Ž . Ž .Ž .Ý w JJ
< <J sn

The strictly positive eigenfunction h in Theorem 1.1 will play a crucial
˜ Ž . Ž .role. It allows us to introduce the normalization of T : C K ª C K

defined by

1
T̃f s T hf .Ž .

rh

The following proposition is easy to check.

PROPOSITION 1.2. Let h be the strictly positï e eigenfunction of T and let

p w x h w xŽ . Ž .j j j
a x s .Ž .j rh xŽ .

Then

m

T̃f x s a x f w x ,Ž . Ž . Ž .Ý j j
js1

˜ mŽ Ž . .and T1 s 1 i.e., Ý a x s 1 .js1 j

The key idea of proving Theorem 1.1 is to establish a ‘‘conjugacy’’
relation between our system and a symbolic space. By a symbolic space we

� 4N Ž .mean the infinite product space S s 1, 2, . . . , m . For s s s g S, wen
< Ž . < k Ž .write s s s , . . . , s and s s s , s , . . . . The shift transfor-k 1 k kq1 kq2

Ž . <1mation on S is defined by u s s s . For s and s 9, we define their
Ž . yn Žs , s 9. Ž .distance as d s , s 9 s e where n s , s 9 is the largest n such that



FAN AND LAU324

< < Ž . yns s s 9 . It follows that a cylinder set I s is the ball of radius e ofn n n
center s . Define

u : S ª S , by u s s js , 1 F j F m.j j

y1Ž . � Ž .4 Ž � 4 � 4.Then u s s u s . The system S, u , q with an arbitrary choicej j j
for q is called a symbolic system. With a suitably defined weight q , thisj j
symbolic system becomes a prototype for a general system. For our case we

q Ž . Ž . Ž Ž .. Ž .define q: S ª R by q s s q s s p p s if s g u S where p isj j j
defined in the next proposition. Let h and n be the eigenfunction andS

Ž � 4 .eigenmeasure of the system S, u , q as in Theorem 1.1. The Gibbsj
measure of this system will be denoted by n s h n . The following estab-˜ S

lishes the conjugacy and ensures the existence of m in Theorem 1.1.

Ž � 4 � 4.PROPOSITION 1.3. Let X, w , p be a contractï e system with attractorj j
K. Let y g K be fixed and let p : S ª K be defined by

p s s lim w y s lim w ??? w y .Ž . Ž . Ž .s < s sn 1 nnª` nª`

Ž .i The limit exists and is independent of y g K. The mapping p is
continuous and onto, and satisfies p (u s w (p , 1 F j F m.j j

Ž .ii Let m be the image of n under p , then m satisfies T*m s rm.

Ž .Proof. i is a consequence of the contractivity of w and is wellj
w x Ž . Ž . Ž .known 6 . To prove ii we define the transfer operator S: C S ª C S

by

m

Sg s s q u s g u s ,Ž . Ž . Ž .Ý j j
js1

Ž . Ž . Ž .and also t : C K ª C S by t f s f (p . By observing that for x s p s
and 1 F j F m,

q u s s p p (u s s p w (p s s p w x ,Ž . Ž . Ž . Ž .Ž . Ž .j j j j j j j

n Ž . n Ž .it is routine to check that t T s St . It follows that S 1 s s T 1 ps .
Because T and S are positive operators, their spectral radii are, respec-
tively, given by

5 n 51r n 5 n 51r nlim T 1 and lim S 1 .
nª` nª`
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From this we conclude that T and S have the same spectral radius r. Now
suppose S*n s rn and m is the image under p of n . Then T*m s rm is
checked by

² : ² : ² : ² :rm , f s rn , f (p s S*n , t f s n , St f

² : ² : ² :s n , t Tf s m , Tf s T*m , f .

Proof of Theorem 1.1. For a multi-index J, we can define, analogous
to p ,wJ

q s s q u ??? u s ??? q u u s q u s .Ž . Ž . Ž . Ž .Ž . Ž . Ž .u j j j j jJ 1 n ny1 n n

Ž . Ž . Ž . Ž n .Then for x s p s , we have q s s p x . Note that s s u u s .u w s <J J n
< <Then for s and s 9 in S such that s s s 9 ,n n

log q s y log q s 9Ž . Ž .

s log p p (u u ns y log p p (u u ns 9Ž . Ž .Ž . Ž .s s < s s <1 n 1 n

s log p w (p u ns y log p w (p u ns 9 .Ž . Ž .Ž . Ž .s s < s s <1 n 1 n

It follows that
nynV log q , e F max V log p , r ,Ž . Ž .ž /j max

1FjFm

where r - 1 is the maximum of the contractive ratios of the wX s. Notemax j
that the Dini condition implies that for any 0 - a - 1,

`
nV log p , a - `.Ž .Ý j

ns1

The last two inequalities imply that the Dini condition of the Ruelle]
Ž � 4 . Ž w x.Perron]Frobenius theorem is satisfied for the system S, u , q see 8 .j

Ž .Hence there exists a strictly positive function h g C S and a probabilityS

Ž .measure n g M S such that

² :Sh s rh , S*n s rn , n , h s 1.S S S

Ž .Now note that for any f g C K and for any n G 1,

T n f (p s Sn f (p ,Ž . Ž .
yn nŽ .and that r S f (p converges uniformly. Because p is a mapping from

S onto K, then rynT n f converges uniformly to a function, which is an
eigenfunction associated with r if the limit is not zero. Actually, if we take
f to be the constant function equal to 1, the limit of rynSn1 is the function
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h which is strictly positive. We can deduce that the corresponding limit ofS

rynT n1 is also strictly positive. Thus we obtain a strictly positive eigen-
function of T associated with r. Take such a strictly positive eigenfunction

² : ² :h such that m, h s 1. We claim h(p s h . This is because n , h(p sS

² :m, h s 1 and

S h(p s S t h s t Th s rt h s r h(p .Ž . Ž . Ž . Ž .

˜ ˜The claim follows then from the uniqueness of h . Let S and T be definedS

as is Proposition 1.2. Note that

1
n n˜t T f s t T hfŽ . Ž .Ž . nr h(p

1 1
n n ñs S t hf s S h ? t f s S t f .Ž . Ž . Ž .Sn nr h(p r hS

ñŽ . ² :Because S t f converges uniformly to the constant n , t f , we deduce
˜nthat T f also converges uniformly to the same constant, using again the

surjectivity of p and the previous argument. The constant is actually
² : yn n ² :m, f . Thus we have proved the convergence of r T f to m, f h.

Ž .For any j g M K ,

² yn n : ² yn n : ² :² : ²² : :r T* j , f s j , r T f ª j , h m , f s j , h m , f ,

yn n ² :which means r T* j converges weakly to j , h m.
For the uniqueness of m, we suppose that there exists another eigen-

measure m9. Then

yn n ² :m9 s r T* m9 ª m9, h m.

Because m and m9 are probability measures, we have

² : ² :² : ² :1 s m9, 1 s m9, h m , 1 s m9, h .

Hence m9 s m. The uniqueness of h is a consequence of the convergence
yn nr T f , using the preceding argument.

Ž � 4 � 4.PROPOSITION 1.4. Let X, w , p be defined as in Theorem 1.1. Forj j
Ž . Ž .q g R, consider the Ruelle operator T : C K ª C K defined byq

m
q

T f x s p w x f w x .Ž . Ž . Ž .Ž . Ž .Ýq j j j
js1

Ž . Ž .Then the pressure function log r q , where r q is the spectral radius of T , isq
a real analytic function.
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Ž . Ž .Proof. The proposition is well known for S : C S ª C S when theq
Žp s are strictly positive Holder continuous functions see, for example,¨j

w x. Ž .23 . Its proof depends on that r q is an isolated point of the spectrum of
Žw x.T and that the eigenspace is one dimensional 5, p. 587 . The same proofq

will apply here.

In the following we consider the important Gibbs property of the eigen-
measure in Theorem 1.1. To abbreviate notations we write a f b ton n
mean the existence of a C ) 0 so that 0 - Cy1a F b F Ca for all n.n n n

� 4 � 4LEMMA 1.5. Let a , b be positï e sequences such that 0 - h F a , bn n n n
< <and a y b F r with Ý r - `, thenn n n n

n n

a f b .Ł Łj j
js1 js1

Proof. It suffice to observe from the hypothesis that

r a rn n n
1 y F F 1 q .

h b hn

Ž � 4 � 4.THEOREM 1.6. Let X, w , p be a contractï e system with attractor Kj j
Ž . < < < <as in Theorem 1.1. Suppose m K l K s 0 for all L / J with L s J .L J

Then

Ž . Ž .i m has the Gibbs property: for each x g K and J, m K fJ
y< J < Ž .r p x ;w J

Ž . Ž .ii For m almost all x g K and for s such that x s p s , we ha¨e

mlog m KŽ .s < nlim s log p x h x dm x y log r .Ž . Ž . Ž .Ž .Ý H innª` K jjs1

Proof. Let n be the corresponding eigenmeasure for the symbolic
w xspace, it is known 3 that

n
yn jy1n I s f r q u s . 1.1Ž . Ž . Ž .Ž . Łn

js1

Note that for any 1 F j F n,

jy1 jy1 < nq u s s p p u s s p w ??? w ps .Ž . Ž . Ž .Ž . ž /s s s sj j j n
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For any x, y g K,

log p w ??? w x y log p w ??? w yŽ . Ž .Ž . Ž .s s s s s sj j n j j n

nF max V log p , r ,Ž .ž /j max
1FjFm

where r is the largest of the contractive ratios of w s. The Dinimax j
` Ž k .condition implies that Ý V log p , a - ` for any 0 - a - 1 and 1 F jks1 j

Ž .F m. By the foregoing lemma we have for x s p s g K,

n
njy1 <q u s s p ps f p x . 1.2Ž . Ž . Ž . Ž .Ł w ws < s <n njs1

Ž . Ž Ž .. Ž . Ž . Ž .Next we claim that m K s n I s which implies i by 1.1 and 1.2 .s < nn
Ž . Ž y1Ž ..In fact because m is the image of n under p , we have m K s n p KJ J

for any J. Note that

I ; py1 K ; I j py1 K l K .Ž . Ž .DJ J J L Jž /
< < < <L s J , L/J

Ž y1Ž .. Ž . Ž .But n p K l K s 0 by hypothesis, it follows that m K s n I .L J J J
Ž .To prove ii we let

`

< < < <H s K _ K l K : L s J s n , L / J .� 4D L J
ns1

Then by assumption H s K except for a m-zero set. For each x g H there
Ž .exists a unique s g S such that x s p s . We note that the Gibbs

measure n is invariant and ergodic. So by the ergodic theorem, for˜
n-almost all s ,

log n I sŽ .Ž .n
lim s log q s dn s y log r .Ž . Ž .˜Hnnª` S

Ž . Ž .To end the proof of ii , it suffices to calculate the last integral. Let n j, ?
< y1 Žbe the image of n under the mapping u : S ª S S being definedS j j jj

. Ž . < y1like K . Let m j, ? be the image of m under the mapping w : K ª K.Sj j jj

These mean that

f x dm j, x s f wy1 x dm x , ; f g C K ,Ž . Ž . Ž . Ž .Ž .Ž .H H j
K K j

w s dn j, s s w uy1s dn s , ;w g C S .Ž . Ž . Ž . Ž .Ž .Ž .H H j
S S j
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y1 Ž .Note that u is the restriction of u on S . Note also that m j, ? is thej j
Ž .image of n j, ? under p . That means

f x dm j, x s f ps dn j, s , ; f g C K .Ž . Ž . Ž . Ž . Ž .Ž .H H
K S

Now we calculate

log q s dn s s log p ps h ps dn sŽ . Ž . Ž . Ž . Ž .˜ Ž .ÝH H j
S S jj

s log p p uy1s h p uy1s dn j, sŽ .Ž . Ž .ÝH ž /j j j
Sj

s log p wy1ps h wy1ps dn j, sŽ .Ž . Ž .ÝH ž /j j j
Sj

s log p wy1 x h wy1 x dm j, sŽ .Ž . Ž .ÝH ž /j j j
Kj

s log p x h x dm x .Ž . Ž . Ž .Ž .ÝH j
K jj

Note that K l K s B for i / j clearly satisfies the measure separationi j
Ž . Žcondition m K l K s 0. However it appears to be too strong theJ L

system with this property can actually be identified with the symbolic
.space , a simple example that such a separation condition cannot be

satisfied is the three similarities that generates the Sierpinski triangle. In
the next section we impose more restrictions on the contractions wX s toj
ensure the measure separation condition, namely, the open set condition
and the conformality, which includes the Sierpinski triangle. Also we
remark that if the condition holds and if the w s are one to one, we can setj

y1Ž .up a topological conjugacy between H and p H and we can establish
the following commutative diagram except for a m-zero set,

� 4u j 6
6S S

u

6 6

,
p p

� 4wj 6
6K K

Q

y1 ` � < < < < 4where Q x s w x if x g K _ D K l K : L / J, L s J s n , andj j ns1 L J
Q x is arbitrary for the rest of the x. This is used to induce the multifractal

Ž � 4 � 4. Ž .structure of the symbolic system to X, w , p see Section 3 .i i
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2. SELF-CONFORMAL MEASURES AND
OPEN SET CONDITION

We call a Rd-valued map w defined on some open set V ; Rd a
Ž .conformal map if w is continuously differentiable and if w9 x is a

Ž Ž .self-similar matrix for each x g V i.e., w9 x is a constant multiple of a
.rotation . Throughout the next two sections, we make the following as-

� 4msumptions on w :j js1

Ž . dI X is a compact subset of R , w : X ª X is one-to-one andj
contractive;

Ž .II w is conformal on an open set V > X ;j

Ž . < XŽ . <III log w x satisfies the Dini condition on X.j

For such iterated function systems, the eigenmeasure in Theorem 1.1 is
called a self-conformal measure. It is the probability measure m satisfying

m
y1rm s p x m(w ,Ž .Ý i i

is1

where r is the spectral radius of T. The contractive ratio of w at x is thej
XŽ . d < XŽ . <operator norm of the matrix w x on R , denoted by w x . Thej j

< XŽ . < < XŽ . < d < XŽ . <assumptions imply that 0 - w x - 1 and w x s det w x . Notej j j
that by the chain rule,

wX x s wX w ??? w x wX w ??? w x ??? wX x .Ž . Ž . Ž . Ž .J j j j j j j j1 2 n 2 3 n n

� 4m Ž .We say that w satisfies the open set condition OSC if there exists aj js1
bounded open set U such that U : V and

w U : U and w U l w U s B, i / j.Ž . Ž . Ž .i i j

Ž .We call such U a basic open set. Let s be the positive number such that
the Ruelle operator,

m
sX< <T f x s w x f w x 2.1Ž . Ž . Ž . Ž .Ýs j j

js1

has spectral radius 1. The existence and uniqueness of such s is because
Ž . 5 n 51r nthe spectral radius r s s lim T 1 is continuous, strictly increas-nª` s

Ž . Ž . Ž n Ž . < X Ž . < s.ing with r 0 s m and r ` s 0 note that T 1 x s Ý w x . Alsos < J <sn J
Ž . Ž . XŽ . XŽ y1Ž Ž ...note that 2.1 can be adjusted to 0.2 by writing w x s w w w x ,j j j j

n Ž . Ž .so that lim T 1 x s h x uniformly for some h ) 0 satisfying T h s hnª` s s
Ž .Theorem 1.1 .
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If U is a basic open set, it is easy to see that K : U so that m is
supported by U. In all applications, it is important to have K ; U and m is
supported by U. However sometimes a basic open set U may not support
m. For example, consider the standard Cantor measure m defined by

x x 2
S x s , S x s q .1 23 3 3

Ž .If C denotes the Cantor set, then U s 0, 1 _ C is a basic open set but
Ž . Ž . Ž .m U s 0 and m ­U s m C s 1. Our main results in this section are the

following two theorems.

� 4mTHEOREM 2.1. Suppose the contractï e conformal maps w satisfy thej js1
OSC. Then we can choose a basic open set U which supports all the

� 4mself-conformal measures m with weight function log p satisfying the Dinij js1
condition as in Theorem 1.1.

� 4THEOREM 2.2. Let w and m be as in the pre¨ious text and let K be thej
Ž . < < < <attractor, then m K l K s 0 for J s L , J / L, and Theorem 1.6J L

holds for such m.

We need a few lemmas to prove the two theorems.

LEMMA 2.3. Let K be the attractor.

Ž .i There exists a constant C such that for any x, y g K,1

< X < < X <w x F C w y .Ž . Ž .J 1 J

Ž .ii There exist constants C and d ) 0 such that for x, y, z g K,2
< <x y y F d ,

< <w x y w yŽ . Ž .J JX Xy1 < < < <C w z F F C w z .Ž . Ž .2 J 2 J< <x y y

Proof. Without loss of generality, we can assume that diam K F 1.
< XŽ . <Let a s max max w x . Then the Dini condition implies thatj x j

` Ž < X < k . Ž .Ý V log w , a - ` 1 F j F m . Hence for J s j j ??? j , we haveks1 j 1 2 n

X n< <w xŽ .J X Xlog s log w w ??? w x ylog w w ??? w yŽ . Ž .Ž . Ž .ÝX j j j j j jk kq1 n k kq1 n< <w yŽ .J ks1

n
X X k< <F sup log w u y log w ¨ : u y ¨ F aŽ . Ž .½ 5Ý j j

1FjFmks1

m `
X k< <F V log w , a - `.Ž .Ý Ý j

js1 ks1
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Ž . Ž .This implies i . For ii , we note that by the compactness of K and
the openness of the domain V, there exists d ) 0 such that the balls

Ž .B x , x g K are all contained in V. Now suppose x, y g K withd
2d< < Ž . < < Ž .x y y F d . Consider g s h(w with h u s Ý u and w t s' js1 j

Ž Ž . . Ž .w tx q 1 y t y y w y . Note that h is differentiable at any u / 0 andJ J
Ž .w t / 0 if t / 0. By applying the mean value theorem to g, we get

Xw x y w y s w j x y y ,Ž . Ž . Ž . Ž .J J J

where j is the line segment joining x and y. The self-similar property of
Ž .w x yieldsJ

X < <w x y w y s w j x y y .Ž . Ž . Ž .J J J

Ž . Ž .This together with i implies ii .
m Ž .LEMMA 2.4. Suppose Ý p x for all x g K. If L is a set of multi-in-js1 j

� 4dices such that the cylinder sets I : J g L form a finite disjoint co¨er of S,J
then we ha¨e

p x s 1, for all x g K . 2.2Ž . Ž .Ý wJ
JgL

� < < 4Proof. Let n s max J : J g L . We have by induction,

p x s 1, for all x g K .Ž .Ý w J
< <J sn

< < mSuppose now J g L with J - n, we can replace p by the sum Ýw js1J

because

m m

p x s p w w x p xŽ . Ž . Ž .Ž .Ý Ýw j j J wj J J
js1 js1

m

s p x p w w x s p x . 2.3Ž . Ž . Ž . Ž .Ž .Ýw j j J wJ J
js1

The replacement does not change the expression we are considering. Note
< <also that for every J9 with J9 s n, it must come from one of the J in L.

Ž .Continue this process and apply 2.1 , the lemma follows.

LEMMA 2.5. Let U be a basic open set in the OSC and let m be the
self-conformal measure, then m is either concentrated in U or in ­U, the
boundary of U.
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w xProof. The proof is a modification of a proof in 13 . By Proposition 1.2,
m Ž .we can assume without loss of generality that Ý p x s 1 for all x g K.js1 j

Ž .Suppose m U / 0, then the self-conformality of m implies that

m U s p x 1 w x dm x .Ž . Ž . Ž . Ž .ÝHJ w U LL J
K < < < <L s J

< < < <We observe that K l U s B when J / L, J s L . Otherwise, we haveL J

B / K l U : U l U ,L J L J

which is impossible because U and U are open and disjoint. Conse-J L
Ž Ž ..quently for such J and L, 1 w x s 0 for every x g K. ThenU LJ

m U s m UŽ .D ÝJ Jž /
< < JJ sk

s p x 1 w x dm xŽ . Ž . Ž .Ž .ÝH w U JJ J
KJ

s p x 1 x dm xŽ . Ž . Ž .ÝH w UJ
K J

s m U l K s m U .Ž . Ž .

Ž Ž .The fourth identity is because Ý p x s 1, and the last identity isJ wJ
.because m is concentrated in K. It follows that

m ­U q m U s m U s 1 s m UŽ . Ž . Ž . D Jž /
< <J sk

s m U q m ­U s m U q m ­U .Ž .D D DJ J Jž / ž / ž /
< < < < < <J sk J sk J sk

Consequently we have

m ­U s m ­U .Ž . D Jž /
< <J sk

Ž . Ž w Ž .xBy noting that ­U l K : D ­U l K see 13, Lemma 2.2 iv for< J <sk J
the proof in the case of self-similarities, the proof is topological and hence

.works for the contractive invertible w s here , we havej

m ­U _ ­U s 0.D Jž /
< <J sk
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Ž .Let F s D ­U j ­U. Then the earlier text implies that m F _ ­U s 0J J
Ž . Ž . Ž .and hence m U _ F s m U _ ­U s m U .

Ž . < Ž .y1If m U / 0, we define l s am where a s m U _ F . BecauseU _ F
y1Ž . Žw Ž .xw U _ F l U : U _ F 13, Lemma 2.2 iii we havei

m
y1l A s p x l w A ,Ž . Ž . Ž .Ž .Ý w ii

is1

for any Borel subset A : U _ F, F, and X _ U. Because l is a probability
measure, the uniqueness of the eigenmeasure implies that l s m and
proves the lemma.

n < <For any two sets A, B in R , we use A to denote the diameter of A,
and we let

D A , B s inf d x , y : x g A , y g B .� 4Ž . Ž .
< X Ž . <be the distance of A and B. For a fixed x g K, we let r s w x . Then itJ J

Ž .follows from Lemma 2.3 i and the chain rule that there exists C ) 0 such
that

1
r r F r F Cr r . 2.4Ž .I J I J I JC

For small t ) 0, let

L s J s j , . . . , j : n is the smallest such that r - t .� 4Ž .t 1 n J

� 4mLEMMA 2.6. Suppose the contractï e conformal family w satisfies thej js1
OSC, then there exists a basic open set G such that G l K / B.

w xProof. The proof is a modification of 24 . Let W be a basic open set
Ž . Ž .from the OSC, let d be as in Lemma 2.3 ii , and let C be as in 2.4 . We

< <fix an index J so that W F d and we let U s W . For each J, letJ J

L J s I g L : D U , U F Cyn r ,Ž . Ž .� 4n <U < I J JJ

Ž .and let g s sup aL J . Because the previous U s are disjoint, each Un n I J
Ž < <.can intersect at most a bounded number independent of U of U ,J I

Ž . � 4I g L J . We hence have g - `. Furthermore g is decreasing, theren n n
exists an n G 1 such that g s g s ??? . We fix this n and we let J0 n n q1 0 00 0

Ž . Ž .be the index such that g s aL J . This implies that g s L Jn q2 n q2 0 n n 00 0 0 0

also.
Ž . Ž .For any index I, we use II I to denote the index set L IJ . Then then 00

Ž .maximality of g implies g G a II I . On the other hand observe that forn n0 0
Ž . Ž . Ž . Ž .J g L J s L J , by Lemma 2.3 ii and 2.4 ,n 0 n q2 00 0

D U , U F Cr D U , U F Cr CyŽ n0q2 .r F Cyn 0 r .Ž . Ž .I J I J I J J I J I J0 0 0 0
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This implies that

II I = IJ : J g L J .Ž . Ž .� 4n 00

Ž . � Ž .4 Ž .Hence a II I G a IJ: J g L J . This, together with g G a II I , en-n 0 n0 0

ables us to see that the preceding inclusion is actually an equality. From
this, we conclude that if I / I9, r G r , thenI9 I

D U , U ) Cyn 0 r . 2.5Ž .Ž .I J I9J I J0 0 0

Now define
1 yn y10Ũ s y : d y , U - C r ,Ž .� 4J J J20 0 0

˜Ž . Ž . Ž .and let G s D w U . Then clearly, w G : G. We show that w G lJ J J j i0 ˜Ž . Ž . Ž . Ž .w G s B. Indeed, if y g w G l w G , there exists y g w U , y gj i j 1 i I J 20˜Ž .w U andj J J0

1 1yn y1 yn y10 0d y , y - C r , d y , y - C r .Ž . Ž .1 i I J 2 j J J2 20 0

Without loss of generality assume that r G r , then we havej J J i I J0 0

D y , y F Cyn 0 r ,Ž .1 2 j J J0

Ž .which contradicts 2.5 .

Proof of Theorem 2.1. Take the basic open set U such that U l K / B
Ž .as in the foregoing lemma. Then m U / 0 and Lemma 2.5 implies that m

is concentrated in U.

Proof of Theorem 2.2. Let U be chosen as in the previous text, then the
Ž .proof of Lemma 2.5 implies that m ­U s 0. Because K l K : U l UJ I J I J

and U l U s B, we have K l K : ­U l ­U and the result follows.I J I J I J

To conclude this section, we consider now the relation between the
self-conformal measure of T and the Hausdorff measure on the attractors

w xK. This has also been considered in 16 under some stronger geometric
condition on the seed set, the regularity of w and the open set condition.j
We include the following simple proof for completeness.

� 4mTHEOREM 2.7. Suppose the conformal family w satisfies the OSC.j js1
Let s be the positï e number such that the spectral radius of T equals 1 ands

s sŽ .let HH denote the Hausdorff measure. Then 0 - HH K - `.

< X Ž . < Ž .Proof. For any fixed x, let r s w x . By Lemma 2.3 ii , we haveJ J
< <K F Cr , and henceJ J

< < s sK F C r .Ý ÝJ J
< < < <J sn J sn
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Note also that

lim r s s lim T n1 x s h x .Ž . Ž .Ý J s
nª` nª`< <J sn

sŽ .This implies that HH K - `.
sŽ .Next we prove HH K ) 0. We need a measure m supported by K such

Ž . sthat m B F Ct for any ball B of radius t, then the mass distributiont t
w x y1 sŽ .principle 6 implies 0 - C - HH K . We take the measure m satisfying

TUm s m, i.e.,s

m
sX y1< <m s w m (w .Ž .Ý j j

js1

Let U be a basic open set for K. Then the U s, J g L , are disjoint and byJ t
Ž . Ž .Lemma 2.3 ii there exists a positive number a ) 0 independent of t

such that each U contains a ball of radius at. This implies that there existsJ
an integer l independent of t such that any ball B can intersect at most lt
of the U J g L . For a fixed ball B , denote this family of J by FF. It isJ t t

y1Ž . � 4 Žeasy to show that p B : D I : J g FF I is the cylinder set with baset J J
. Ž . Ž . Ž . Ž . Ž .J so that m B F Ý n I . By 1.2 and Lemma 2.3 i , n I Ft J g FF J J

X s< Ž . < Ž .C w x s Cr . It follows that m B F C9lt and yields the proposition.J J t

LEMMA 2.8. Let w be conformal and in¨ertible, let E be a Borel subset in
sŽ .the domain of w, and 0 - HH E - `. Then we ha¨e the following formula

of change of ¨ariable,

s < < s sHH w E s w9 x dHH x .Ž . Ž . Ž .Ž . H
E

sŽ . < < sr d sŽ .The proof is based on HH AE s det A HH E where A is a con-
stant multiple of a rotation, and an elementary approximation technique in

w xchange of variable 22 .

� 4mTHEOREM 2.9. Suppose the conformal family w satisfies the OSC.j js1
s < ULet m s HH . Then m is the self-conformal measure for T , i.e., m satisfiesK s

m
sX y1< <m s w m (w .Ž .Ý j j

js1

Proof. Let h be the 1-eigenfunction of T . Thens

m
sX< <h x s w x h w x . 2.6Ž . Ž . Ž . Ž .Ý j j

js1
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It follows that

m m m

hm K s h x dm x s h w x dm w xŽ . Ž . Ž . Ž . Ž .Ž .Ý Ý ÝH Hj j j
Ž .w K Kjjs1 js1 js1

m
sX< <s w x h w x dm x s hm K .Ž . Ž . Ž . Ž . Ž .Ý H j j

Kjs1

Ž Ž . .The third equality is by Lemma 2.8 and the last equality is by 2.6 . This
Ž .Ž .implies that hm K l K s 0 for i / j. Because h is strictly positive, wei j

Ž .have m K l K s 0. Now for any Borel subset E : K,i j

m
sXU y1< <T m E s w m (w EŽ . Ž .Ž .Ýs j j

js1

m s
X y1 y1s w w x dm w xŽ . Ž .Ž . Ž .Ý H j j j

Ejs1

m
sXs w y dm yŽ . Ž .Ý H jy1Ž .w E lKjjs1

m
y1s m w w E l KŽ .Ž .Ý ž /j j

js1

m

s m E l K .Ž .Ý j
js1

Ž . Ž .Note that m K l K s 0 for i / j. So the last expression equals m Ei j
and m is the eigenmeasure.

3. MULTIFRACTAL STRUCTURE

� Ž .4 dFor 0 - t - 1 we let Q x denote the family of t-mesh cubes in Rt i
d XŽ .with vertices x g tZ . Let Q x be the cube with the same center buti t i

each side has length 2 t. Let m be a bounded positive measure on Rd. For
q g R, 0 - t - 1, we define the Lq-scaling spectrum,

qXlogÝ m Q xŽ .Ž .ig FF t itt q s lim inf ,Ž .
q log ttª0

XŽ . Ž .where FF is the family of Q x such that Q x l supp m / B. Thet t i t i
XŽ . XŽ .adjustment of the Q x in the definition is to guarantee that Q xt i t i
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intersects a nontrivial portion of supp m, which is needed for q - 0. It is
Ž .easy to check that t q is a convex function.

Ž � 4 � 4.LEMMA 3.1. Let X, w , p be a contractï e conformal system and letj j
� 4m be the self-conformal measure. Suppose w satisfies the OSC and let U bej

Ž .a basic open set U supporting m as in Theorem 2.1 . Let

< <L s J s j ??? j : n is the first index such that U F t .� 4Ž .t 1 n J

Then
q

logÝ m UŽ .J g L Jtt q s lim inf .Ž .
q log ttª0

Ž .Proof. For each x, there is s g S such that x s p s . It follows that
` ` <x s F K s F U where J s s . By the conformal property innns1 J ns1 J nn n

Ž . ŽLemma 2.3 ii , it is easy to show that there exist c , c ) 0 independent of1 2
.t and x such that for J g L we haven t

Q x : U : Q x . 3.1Ž . Ž . Ž .c t J c t1 n 2

The proof of the lemma for q G 0 is quite straightforward. We are going
to discuss the case q - 0. The previous inclusions imply that there exists

Ž . Ž .an integer l independent of t such that each U J g L intersects atJ t
Ž .most l of the Q x and vice versa and there exists a ) 0 such that fort i

XŽ . XŽ . Žt ) 0 and for Q x g FF , we can find U : Q x for some J g L wet i t J t i at
Ž . .used the enlarged cube instead of Q x here . This implies that fort i

Ž . Ž XŽ ..q Ž .qQ x l supp m / B, m Q x F m U for q - 0 so thatt i t i J

q qXm Q x F m U , for all t .Ž . Ž .Ž .Ý Ýt i J
JgLFF att

Similarly we can show that there exists a9 such that
qq Xm U F m Q x , for all t .Ž . Ž .Ž .Ý ÝJ t i

JgL FFa9t t

Hence the lemma follows.

For two given functions w and w on Ý and for q, t g R, we define the1 2
Ž . Ž .transfer operator S : C Ý ª C Ý byq, t

m
qw Žu s .qtw Žu s .1 j 2 jS f s s e f u s .Ž . Ž .Ýq , t j

js1

Ž . Ž . Ž .Let r q, t be the spectral radius of S and let P q, t s log r q, t beq, t

the pressure function. The following theorem is well known when w and1
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w xw are Holder functions 2, 21, 23 . The same conclusion holds in view of¨2
Proposition 1.4.

THEOREM 3.2. Suppose log w and log w satisfy the Dini condition.1 2
Then

Ž . Ž .i P q, t is con¨ex and real analytic and

­ ­
P q , t s w dn , P q , t s w dn ,Ž . Ž .˜ ˜H H1 q , t 2 q , t­ q ­t

where n is the Gibbs measure of the system with weight eqw1qt w 2.q̃, t

Ž .ii If w - 0, then there exists a real analytic t : R ª R such that2
Ž Ž ..P q, t q s 0 and

Hw dñ1 q , t Žq.
t 9 q s y .Ž .

Hw dñ2 q , t Žq.

For the conformal system we define, for q, t g R,

qm p w xŽ .j j ytX< <T f x s w x f w x .Ž . Ž . Ž .Ýq , t j jž /rjs1

Note that T s rT is the transfer operator in Section 1. If we write1, 0
XŽ . XŽ y1Ž Ž ...w x s w w w x and we writej j j j

q
p x ytŽ .j X y1a x s w w x ,Ž . Ž .Ž .j j jž /r

then
m

T f x s a w x f w x ,Ž . Ž . Ž .Ýq , t j j j
js1

Ž � 4 � 4.and X, w , a is a contractive system. It is also easy to show that log aj j j
< X <satisfies the Dini condition if log w and log p satisfy the same condition.j j

Ž .As in the preceding text, we use r q, t to denote the spectral radius of
Ž . Ž .T and we use P q, t s log r q, t to denote the pressure of the system.q,t

ŽIt coincides with the one for the corresponding dynamical system see the
.proof of Proposition 1.3 .

Ž � 4 � 4.THEOREM 3.3. Let X, w , p be a contractï e conformal systemj j
� 4m � 4mwhere w satisfy the OSC and log p satisfy the Dini condition. Let mj js1 j js1

q Ž .be the self-conformal measure. Then the L -scaling spectrum t q is the
Ž Ž ..unique solution of the pressure P q, t q s 0.
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Ž .Proof. That P q, t s 0 means the eigenvalue of T is 1, and byq, t

Theorem 1.1,

q
p xŽ . ytw XJ nw x s T 1 ª h , uniformly as n ª `.Ž . Ž .Ý J q , t< J <ž /r< <J sn

By using the same argument as in Lemma 2.4 we can replace the restric-
< <tion J s n under the summation sign by J g L .t

Let U be a basic open set supporting m. By the Gibbs property
Ž .Theorem 1.6 , we have for a fixed x,

p xŽ .w Jm U s m K f .Ž . Ž .J J < J <r

Then for 0 - t - 1,

q q
p x p xŽ . Ž .w wq ytXJ Jt t< <m U f f t w x f t ,Ž . Ž .Ý Ý ÝJ J< J < Jž / ž /r rJgL JgL JgLt t t

Ž .as t ª 0. This implies that t q s t by Lemma 3.1.

THEOREM 3.4. Under the same hypothesis as the last theorem and let
Ž .a s t 9 q for some q g R. Let

log m Q xŽ .Ž .t
E s x g K : lim s a .a ½ 5q log ttª0

Ž . Ž .Then dim E s q ? t 9 q y t q .a

Proof. Without loss of generality we assume that the spectral radius of
Ž .T is equal to 1. Let K x denote the sequence of K that converges to xJ Jn n

<and J s s for some sequence of indices s . By Theorem 1.6 we havenn
Ž Ž .. Ž . � 4mm K x f p x . Let U be the basic open set for w as in TheoremJ w j js1n JnŽ . Ž .2.1, then m U s m K . By using the definition of L in Lemma 3.1 andJ J t

Ž .applying Lemma 2.3 ii , we have

log m K xŽ .Ž .JnE s x g K : lim s a .Xa ½ 5< <log w xnª` Ž .Jn

Ž .Let q be chosen so that a s t 9 q and m be the self-conformalq
measure corresponding to TU . It follows that m and m are related byq, t Žq. q

qq yt Žq. yt Žq.X X< < < <m K x f p x w x f m K x w x .Ž . Ž . Ž . Ž . Ž .Ž . Ž .q J w J J Jn J n n nn
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Consequently we have

log m K x log m K xŽ . Ž .Ž . Ž .q J Jn nlim s q lim y t q . 3.2Ž . Ž .X X< < < <log w x log w xnª` nª`Ž . Ž .J Jn n

It follows that

log m K xŽ .Ž .Jnlim s a , 3.3Ž .X< <log w xnª` Ž .Jn

if and only if

log m K xŽ .Ž .q Jnlim s qa y t q . 3.4Ž . Ž .X< <log w xnª` Ž .Jn

Ž .By Theorem 1.6 ii and the expression of T , we have for m almost all x,q, t q

1
lim log m K xŽ .Ž .q Jnnnª`

m
X y1s q log p y y t q log w w y h y dm y .Ž . Ž . Ž . Ž . Ž .Ž .Ý H j j j q q

K jjs1

Furthermore we claim that

m1
X X y1lim log w x s log w w y h y dm y . 3.5Ž . Ž . Ž . Ž . Ž .Ž .Ý H ž /J j j q qnnnª` K jjs1

It follows that for m -almost all x,q

log m K xŽ .Ž .q Jnlim X< <log w xnª` Ž .Jn

Ým H log p y h y dm yŽ . Ž . Ž .Ž .js1 K j q qjs q y t q .Ž .
Xm y1< <ž /Ý H log w w y h y dm yŽ . Ž . Ž .Ž .ž /js1 K j j q qj

Ž .By Theorems 3.2 ii and 3.3 we know that the quotient inside the paren-
Ž . Ž . Ž .thesis is actually t 9 q s a . This together with 3.3 and 3.4 imply that

w xm is concentrated in E and by the mass distribution principle 6 , E hasq a a

Ž . Ž .Hausdorff dimension qt 9 q y t q .
To prove the claim, it will be more convenient to use the notations in

Ž .the symbolic space as defined in Section 1. Let s s j , j , . . . so that1 2
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Ž . Ž . Ž i .p s s x. It follows that x s lim w x . Furthermore we have p u snª` Jni Ž . Ž .s u p s s lim w ??? w x . We definenª` j jiq1 n

< X <f s s f j , u s s log w p (u s .Ž . Ž . Ž .Ž .Ž .1 j1

Then

n1 1
X X< < < <lim log w x s lim log w w ??? w xŽ . Ž .Ž .ÝJ j j jn i iq1 nn nnª` nª` is1

n1
X i< <s lim log w p (u sŽ .Ž .Ý jinnª` is1

n1
i< <s lim log f u s .Ž .Ž .Ýnnª` is1

For the second equality, we used the Dini condition on w s. Let n be the˜j q
invariant measure on S corresponding to h m on K. Then by the Ergodicq q
theorem, for n almost all s the preceding limit equalsq̃

m

f v dn v s f j, u v h pv dn vŽ . Ž . Ž . Ž . Ž .Ž .˜ ÝH Hq q q
S S jjs1

m
Xs log w pu v h pv dn vŽ . Ž . Ž .Ž .Ý Ž .H j q q

S jjs1

m
X y1 y1s log w p u v h p u u v dn vŽ . Ž . Ž .Ž . Ž .Ý H ž /j j q j j q

S jjs1

m
Xs log w pv h p u v dn j, vŽ . Ž . Ž .Ž .Ž .Ý H j q j q

Sjs1

m
Xs log w pv h v pv dn j, vŽ . Ž . Ž .Ž .Ý H j q j q

Sjs1

m
Xs log w y h w y dm j, yŽ . Ž . Ž .Ž .Ý H j q j q

Kjs1

m
X y1s log w w x h x dm x ,Ž . Ž .Ž .Ý H ž /j j q q

K jjs1

Ž . Ž . Ž . Ž .where n j, ? and m j, ? are defined as n j, ? and m j, ? in the proofq q
of Theorem 1.6, and the calculation is also the same as there. This implies
Ž .3.5 and completes the proof.
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We define the Hausdorff dimension and the entropy dimension of m as

dim m s inf dim E : m E s 1 ,� 4Ž . Ž .h h

and

logÝ m Q x log m Q xŽ . Ž .Ž . Ž .ig FF t i t itdim m s lim inf ,e q log ttª0

Ž . Ž . w xwhere FF is the family of Q x such that Q x l supp m / f. See 7 fort t i t i
Ž . Ž .other related notions. It is known that if t 9 1 exists, then t 9 1 s dim mh

w xs dim m 15 .e

COROLLARY 3.5. Under the pre¨ious assumption, then

Ým H log p x h x dm xŽ . Ž . Ž .Ž .js1 K jjdim m s dim m s t 9 1 s .Ž .h e Xm y1< <Ý H log w w x h x dm xŽ . Ž . Ž .Ž .žjs1 K j jj

Ž .In particular we see that when p x s p are constants and Ý p s 1,j j i

then h s 1 and m s Ým p m(wy1 the preceding quantity can easily bejs1 j j
reduced to

Ým p log pjs1 j j
.Xm < <Ý p H log w x dm xŽ . Ž .js1 j K j

w xIt coincides with the result obtained by Strichartz 25 using a family of
vector-valued self-similar measures to approximate the self-conformal
measures.
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