# THE REGULARITY OF $L^{p}$-SCALING FUNCTIONS* 

KA-SING LAU ${ }^{\dagger}$ and MANG-FAI MA ${ }^{\ddagger}$


#### Abstract

The existence of $L^{p}$-scaling function and the $L^{p}$-Lipschitz exponent have been studied in [Ji] and [LW] and a criterion is given in terms of a series of product of matrices. In this paper we make some further study of the criterion. In particular we show that for $p$ an even integer or for all $p \geq 1$ in some special cases, the criterion can be simplified to a computationally efficient form.


1. Introduction. The solution $f$ of a 2 -scale dilation equation

$$
\begin{equation*}
f(x)=\sum_{n=0}^{N} c_{n} f(2 x-n), \quad x \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

is called a scaling function. This class of functions has been studied in detail in recent literature in connection with wavelet theory [D] and constructive approximations [DGL]. The question of existence of continuous, $L^{1}$ and $L^{2}$ solutions was treated in Daubechies [D], Daubechies and Lagarias [DL1], Collela and Heil [CH], Eirola [E], Heil $[\mathrm{H}]$, and Micchelli and Prautzsch [MP]. The regularity of such solutions was studied, in addition to the above papers, in Cohen and Daubechies [CD], Daubechies and Lagarias [DL2,3], Herve [He], Lau, Ma and Wang [LWM] and Villemos [V1,2]. Also the existence of $L^{p}$-solutions has been characterized by Lau and Wang in [LW] and Jia[Ji].

In this paper, we will adopt the previous notations as in [CH], [DL1] and [LW]. Let $T_{0}=\left[c_{2 i-j-1}\right]_{1 \leq i, j \leq N}$ and $T_{1}=\left[c_{2 i-j}\right]_{1 \leq i, j \leq N}$ be the associated matrices of the coefficients $\left\{c_{n}\right\}$, i.e.,

$$
T_{0}=\left(\begin{array}{ccccc}
c_{0} & 0 & 0 & \ldots & 0 \\
c_{2} & c_{1} & c_{0} & \ldots & 0 \\
c_{4} & c_{3} & c_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c_{N-1}
\end{array}\right), \quad T_{1}=\left(\begin{array}{ccccc}
c_{1} & c_{0} & 0 & \ldots & 0 \\
c_{3} & c_{2} & c_{1} & \ldots & 0 \\
c_{5} & c_{4} & c_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c_{N}
\end{array}\right) .
$$

It is known that if $\sum_{n=0}^{N} c_{n}=2$, then 2 is always an eigenvalue of $\left(T_{0}+T_{1}\right)$. Furthermore, if $\sum c_{2 n}=\sum c_{2 n+1}=1$, then 1 is an eigenvalue of both $T_{0}$ and $T_{1}$. Let $\mathbf{v}$ be a 2 -eignevector of $\left(T_{0}+T_{1}\right)$ (which means a right eigenvector associated with the eigenvalue 2) and let

$$
\tilde{\mathbf{v}}:=\left(T_{0}-I\right) \mathbf{v}=\left(I-T_{1}\right) \mathbf{v}
$$

In [LW] the following theorem was proved:
Theorem A. Suppose $1 \leq p<\infty$ and $\sum_{n=0}^{N} c_{n}=2$. Then equation (1.1) has a nonzero compactly supported $L^{p}$-solution (notation: $L_{c}^{p}$-solution) if and only if there exists a 2-eigenvector $\mathbf{v}$ of $\left(T_{0}+T_{1}\right)$ satisfying

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}=0
$$

[^0]In [Ji], Jai studied the same existence question by means of a "hat' function and obtained a similar criterion independently. Furthermore he showed that the existence of an $L^{p}$-solution implies that $\sum c_{2 n}=\sum c_{2 n+1}=1$.

In this paper we will consider the regularity of the solution. We use the $L^{p_{-}}$ Lipschitz exponent to describe the regularity. It is defined by

$$
\operatorname{Lip}_{p}(f)=\liminf _{h \rightarrow 0^{+}} \frac{\ln \left\|\Delta_{h} f\right\|_{p}}{\ln h}
$$

where $\Delta_{h} f(x)=f(x+h)-f(x)$. It is well known that for $1 \leq p<\infty$, if

$$
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}\left\|\Delta_{h} f\right\|_{p}<\infty
$$

(which implies $\operatorname{Lip}_{p}(f)=1$ ), then $f^{\prime}$ exists a.e. and is in $L^{p}$ and $f$ is the indefinite integral of $f^{\prime}$. Recall that the $q$-Sobolev exponent of a function $f$ is defined as

$$
\sup \left\{\alpha: \int\left(1+|\xi|^{q \alpha}\right)|\hat{f}(\xi)|^{q} d \xi<\infty\right\}
$$

For $p=q=2$, the 2-Sobolev exponent equals to the $L^{2}$-Lipschitz exponent, and they are different when $p, q \neq 2$. In general the $L^{p}$-Lipschitz exponent describes the regularity of $f$ more accurately than the Sobolev exponent. The $q$-Sobolev exponent has been studied in [He]. The $L^{p}$-Lipschitz exponent (in a slightly different terminology) has been used to investigate the multifractal structure of scaling functions in [DL3] and $[\mathrm{J} 1,2]$.

Let $H(\tilde{\mathbf{v}})$ be the complex subspace spanned by $\left\{T_{J} \tilde{\mathbf{v}}: J\right.$ is a multi-index $\}$. (We use complex scalar because it will be more convenient to deal with the complex eigenvalues and eigenvectors.).

THEOREM B. Suppose that $\sum c_{2 n}=\sum c_{2 n+1}=1$ and either (i) 1 is a simple eigenvalue of $T_{0}$ and $T_{1}$ or (ii) $H(\tilde{\mathbf{v}})=\left\{\mathbf{u} \in \mathbb{C}^{N}: \sum_{i=1}^{N} u_{i}=0\right\}$. Then for $f$ an $L_{c}^{p}$-solution of (1.1), $1 \leq p<\infty$,

$$
\begin{equation*}
\operatorname{Lip}_{p}(f)=\liminf _{n \rightarrow \infty} \frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}\right)}{p \ln \left(2^{-n}\right)} \tag{1.2}
\end{equation*}
$$

We remark that Jia [Ji, Theorem 6.2] proved that the above formula by replacing $\left\|T_{J} \tilde{\mathbf{v}}\right\|$ with $\left\|T_{J} / H\right\|$ where $H$ denoted the hyperplane in (ii). Our special perference on $\left\|T_{J} \tilde{\mathbf{v}}\right\|$ is that it allows us to calculate the sum in many cases (see Section 4 and 5). Even though there are some overlaps with Jia's result, we like to give a full proof of Theorem B because of completeness and the consistence of the development in the in the sequel.

To reduce the formula in Theorem B, we only consider the 4 -coefficient dilation equation for simplicity. We show that if in addition $c_{0}+c_{3}=1$, then

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|1-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}
$$

(Proposition 4.3) and if $c_{0}+c_{3}=1 / 2$, then

$$
\operatorname{Lip}_{p}(f)=\min \left\{1, \frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|\frac{1}{2}-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}\right\}
$$

(Proposition 4.5). Note that the second case contains Daubechies scaling function $D_{4}$. The formula was actually obtained in [DL3] using a different method and assuming further $1 / 2<c_{0}<3 / 4$. For the general case we show that if $p$ is an even integer, then

$$
\begin{equation*}
\sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}=\mathbf{a} W_{p}^{n} \mathbf{b} \tag{1.3}
\end{equation*}
$$

for an auxillary $(p+1) \times(p+1)$ matrix $W_{p}$ depends only on the coefficients of the dilation equation and for some vectors $\mathbf{a}$ and $\mathbf{b}$ ( Proposition 5.1). In particular for $p=2$, the matrix $W_{2}$ is equivalent to the transition matrix used in [CD], [LW] and [V] for the existence of $L^{2}$-scaling function. By using (1.3) it is easy to show that the necessary and sufficient condition in Theorem A reduces to $\rho\left(W_{p}\right)<2$ and (1.2) becomes

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\rho\left(W_{p}\right) / 2\right)}{-p \ln 2}
$$

where $\rho\left(W_{p}\right)$ is the spectral radius of $W_{p}$ (Theorem 5.3).
The paper is organized as follows. In Section 2 we include some preliminary results concerning the eigen-properties of the matrices $T_{0}, T_{1}$ and $T_{0}+T_{1}$ that we need. We give a complete proof of Theorem B in Section 3. In Section 4, we will apply Theorem B to obtain explicit expressions for the two special cases described above. Finally in Section 5 we construct the matrix $W_{p}$ in (1.3) and use the spectral radius of $W_{p}$ to determine $\operatorname{Lip}_{p}(f)$ when $p$ is an even integer. We also make some remarks concerning extensions of the construction and discuss some unsolved questions.
2. Preliminaries. Throughout this paper, unless otherwise specified, we assume that $1 \leq p<\infty, c_{n} \in \mathbb{R}, c_{0}, c_{N} \neq 0$ and $\sum c_{2 n}=\sum c_{2 n+1}=1$. For any $k \geq 1$, let $J=\left(j_{1}, \ldots, j_{k}\right), j_{i}=0$ or 1 , be the multi-index and $|J|$ the length of $J$. Let $I_{J}=I_{\left(j_{1}, \ldots, j_{k}\right)}$ be the dyadic interval $\left[0 . j_{1} \cdots j_{k}, 0 . j_{1} \cdots j_{k}+2^{-k}\right)$. The matrix $T_{J}$ represents the product $T_{j_{1}} \cdots T_{j_{k}}$. If $\mathbf{v}$ is a 2-eigenvector of $\left(T_{0}+T_{1}\right)$, it is clear that

$$
\begin{equation*}
\frac{1}{2^{k}} \sum_{|J|=k} T_{J} \mathbf{v}=\frac{1}{2^{k}}\left(T_{0}+T_{1}\right)^{k} \mathbf{v}=\mathbf{v} \tag{2.1}
\end{equation*}
$$

For any $g \in L^{p}(\mathbb{R})$ with support in $[0, N]$, let $\mathbf{g}:[0,1] \rightarrow \mathbb{R}^{N}$

$$
\mathbf{g}(x)=[g(x), g(x+1), \ldots, g(x+(N-1))]^{t}, \quad x \in[0,1)
$$

be the vector-valued function representing $g$ and let

$$
\operatorname{Tg}(x)= \begin{cases}T_{0} \mathbf{g}(2 x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ T_{1} \mathbf{g}(2 x-1) & \text { if } x \in\left[\frac{1}{2}, 1\right)\end{cases}
$$

It is easy to show that $f$ is a solution of (1.1) if and only if $\mathbf{f}=\mathbf{T f}$ [DL1]. With no confusion, we use $\|\cdot\|$ to denote the $L^{p}$-norm of $g$ as well as the vector-valued function g. Also for a vector $\mathbf{u} \in \mathbb{R}^{n},\|\mathbf{u}\|$ will denote the $\ell_{N}^{p}$-norm in $\mathbb{R}^{N}$.

Let $g_{I}$ be the average $|I|^{-1} \int_{I} g(x) d x$ of $g$ on an interval $I$.
Proposition 2.1. Let $f$ be an $L_{c}^{p}$-solution of (1.1) and $\mathbf{v}=\left[f_{[0,1)}, \ldots, f_{[N-1, N)}\right]^{t}$ be the vector defined by the average of $f$ on the $N$ subintervals. Then
(i) $\mathbf{v}$ is a 2 -eigenvector of $\left(T_{0}+T_{1}\right)$.
(ii) Let $\mathbf{f}_{0}(x)=\mathbf{v}, x \in[0,1)$, and let $\mathbf{f}_{n+1}=\mathbf{T} \mathbf{f}_{n}, n=0,1, \ldots$, then

$$
\mathbf{f}_{n}(x)=\sum_{|J|=n}\left(T_{J} \mathbf{v}\right) \chi_{I_{J}}(x), \quad x \in[0,1)
$$

and $\left\|\mathbf{f}_{n+1}-\mathbf{f}_{n}\right\|^{p}=2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}$.
(iii) $\left\|\mathbf{f}-\mathbf{f}_{n}\right\|^{p} \leq \frac{c}{2^{n}} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}$ for some $c>0$ and $\mathbf{f}_{n} \rightarrow \mathbf{f}$ in $L^{p}\left([0,1], \mathbb{R}^{N}\right)$.

Proof. The proof of these statements can be found in [LW, Proposition 2.3, Lemma 2.4, 2.5, and Theorem 2.6]. In particular to prove the last identity in (ii), we observe that

$$
\begin{aligned}
\left\|\mathbf{f}_{n+1}-\mathbf{f}_{n}\right\|^{p} & =\frac{1}{2^{n+1}} \sum_{|J|=n}\left(\left\|T_{J}\left(T_{0}-I\right) \mathbf{v}\right\|^{p}+\left\|T_{J}\left(T_{1}-I\right) \mathbf{v}\right\|^{p}\right) \\
& =\frac{1}{2^{n}} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} .
\end{aligned}
$$

Let

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}\right)}{\ln \left(2^{-n}\right)}
$$

Then $\alpha$ is the rate of convergence of $2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}$ to 0 in the sense that the sum is of order $o\left(2^{-\beta n}\right)$ for any $\beta<\alpha$. Let $H(\tilde{\mathbf{v}})$ be the subspace (with complex scalar) spanned by $\left\{T_{J} \tilde{\mathbf{v}}: J\right.$ is a multi-index $\}$.

Lemma 2.2. Under the same conditions and notations as in Proposition 2.1, for any $\mathbf{u} \in H(\tilde{\mathbf{v}})$,

$$
\liminf _{n \rightarrow \infty} \frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}\right)}{\ln \left(2^{-n}\right)} \geq \alpha
$$

Furthermore equality holds if $H(\mathbf{u})=H(\tilde{\mathbf{v}})$.
Proof. Since $H(\tilde{\mathbf{v}})$ is finite dimensional, it suffices to consider $\mathbf{u}=T_{J^{\prime}} \tilde{\mathbf{v}}$ for some $J^{\prime}$. Let $\left|J^{\prime}\right|=k$, then

$$
\frac{1}{2^{n}} \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}=\frac{1}{2^{n}} \sum_{|J|=n}\left\|T_{J} T_{J^{\prime}} \tilde{\mathbf{v}}\right\|^{p} \leq 2^{k} \frac{1}{2^{n+k}} \sum_{|J|=n+k}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}
$$

It follows that

$$
\frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}\right)}{\ln \left(2^{-n}\right)} \geq \frac{\ln \left(2^{k}\right)}{\ln \left(2^{-n}\right)}+\frac{\ln \left(2^{-(n+k)} \sum_{|J|=n+k}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}\right)}{\ln \left(2^{-(n+k)}\right)}
$$

which implies the stated inequality. For the last statement we need only change the roles of $\mathbf{u}$ and $\tilde{\mathbf{v}}$ and make use of the inequality we just proved.

Let $M=\left[c_{2 i-j}\right]_{1 \leq i, j \leq N-1}$, i.e.,

$$
M=\left(\begin{array}{ccccc}
c_{1} & c_{0} & 0 & \ldots & 0 \\
c_{3} & c_{2} & c_{1} & \ldots & 0 \\
c_{5} & c_{4} & c_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c_{N-1}
\end{array}\right)
$$

be the common submatrix of $T_{0}$ and $T_{1}$. If $\sum c_{2 n}=\sum c_{2 n+1}=1$, then 1 is an eigenvalue of $M$ and $[1,1, \ldots, 1]$ is the corresponding left 1-eigenvector. Let $H=$ $\left\{\mathbf{u} \in \mathbb{C}^{N}: \sum_{i=1}^{N} u_{i}=0\right\}$.

Lemma 2.3. There exist $\mathbf{v}_{0}, \mathbf{v}_{1} \notin H$ (i.e., $\sum\left(\mathbf{v}_{0}\right)_{i}=\sum\left(\mathbf{v}_{1}\right)_{i} \neq 0$ ) such that $\left(T_{0}-I\right)^{m} \mathbf{v}_{0}=\left(T_{1}-I\right)^{m} \mathbf{v}_{1}=0$ for some $m>0$, and

$$
\begin{equation*}
T_{0} \mathbf{v}_{1}=T_{1} \mathbf{v}_{0} \tag{2.2}
\end{equation*}
$$

Remark. When $m=1, \mathbf{v}_{0}$ and $\mathbf{v}_{1}$ are 1-eigenvectors of $T_{0}$ and $T_{1}$ respectively.
Proof. Let $E_{\lambda}=\left\{\mathbf{u} \in \mathbb{C}^{N-1}:(M-\lambda I)^{m} \mathbf{u}=0\right.$ for some $\left.m>0\right\}$. Observe that for $\lambda \neq 1$ and for $\mathbf{u} \in E_{\lambda}$,

$$
0=[1,1, \ldots, 1](M-\lambda I)^{m} \mathbf{u}=(1-\lambda)^{m} \sum_{i=1}^{N-1} u_{i}
$$

for some $m>0$, so that $\sum u_{i}=0$. In view of $\mathbb{C}^{N-1}=E_{1} \oplus \sum_{\lambda \neq 1} E_{\lambda}$, there exists $\mathbf{a} \in E_{1}$ such that $\sum a_{i} \neq 0$. If 1 is a simple eigenvalue of $M, \operatorname{dim} E_{1}=1$ and hence the above $\mathbf{a}$ is a 1 -eigenvector of $M$. Let

$$
\begin{equation*}
\mathbf{v}_{0}:=\left[0, a_{1}, \ldots, a_{N-1}\right]^{t}, \quad \mathbf{v}_{1}:=\left[a_{1}, \ldots, a_{N-1}, 0\right]^{t} \tag{2.3}
\end{equation*}
$$

Then $\mathbf{v}_{0}$ and $\mathbf{v}_{1}$ are 1-eigenvectors of $T_{0}$ and $T_{1}$ respectively, and $\mathbf{v}_{0}, \mathbf{v}_{1} \notin H$. Moreover, by the definitions of $T_{0}$ and $T_{1}$, we have

$$
\begin{equation*}
\left(T_{0} \mathbf{v}_{1}\right)_{i}=\sum c_{2 i-j-1} a_{j}=\sum c_{2 i-j} a_{j+1}=\left(T_{1} \mathbf{v}_{0}\right)_{i} \tag{2.4}
\end{equation*}
$$

so that $T_{0} \mathbf{v}_{1}=T_{1} \mathbf{v}_{0}$. If 1 is not a simple eigenvalue of $M$, we let $m$ be the smallest positive integer so that $(M-I)^{m} \mathbf{a}=0$. Define $\mathbf{a}^{(1)}=\mathbf{a}, \cdots, \mathbf{a}^{(m)}=(M-I)^{m-1} \mathbf{a}$, and let

$$
\begin{equation*}
\mathbf{v}_{0}^{(i)}=\left[0, \mathbf{a}^{(i)}\right]^{t} \quad \text { and } \quad \mathbf{v}_{1}^{(i)}=\left[\mathbf{a}^{(i)}, 0\right]^{t}, \quad 1 \leq i \leq m \tag{2.5}
\end{equation*}
$$

Then $\mathbf{v}_{j}^{(1)} \notin H$ and $\mathbf{v}_{j}^{(m)}$ are eigenvectors of $T_{j}, j=0,1$ and

$$
\begin{equation*}
T_{j} \mathbf{v}_{j}^{(i)}=\mathbf{v}_{j}^{(i)}+\mathbf{v}_{j}^{(i+1)}, \quad 1 \leq i \leq m-1, \quad j=0,1 \tag{2.6}
\end{equation*}
$$

If we let $\mathbf{v}_{0}=\mathbf{v}_{0}^{(1)}$ and $\mathbf{v}_{1}=\mathbf{v}_{1}^{(1)}$, then a similar calculation like (2.4) implies that $T_{0} \mathbf{v}_{1}=T_{1} \mathbf{v}_{0}$ again.

Corollary 2.4. Let $\mathbf{v}_{0}, \mathbf{v}_{1}$ be chosen as in the proof of Lemma 2.3, Then
(i) $T_{0} \mathbf{v}_{1}^{(i)}=T_{1} \mathbf{v}_{0}^{(i)} \quad$ for $1 \leq i \leq m$.
(ii) $T_{1} T_{0}^{k-1} \mathbf{v}_{0}=T_{0} T_{1}^{k-1} \mathbf{v}_{1} \quad$ for $k \geq 1$.
(iii) $\left(T_{0}^{n} \mathbf{v}_{0}\right)_{1}=\left(T_{1}^{n} \mathbf{v}_{1}\right)_{N}=0 \quad$ and $\quad\left(T_{0}^{n} \mathbf{v}_{0}\right)_{i}=\left(T_{1}^{n} \mathbf{v}_{1}\right)_{i-1} \quad$ for $2 \leq i \leq N$.

Proof. (i) and (ii) follows directly from the same calculation as in the proof of the above lemma. The first identity in (iii) is a consequence of $\left(\mathbf{v}_{0}\right)_{1}=\left(\mathbf{v}_{1}\right)_{N}=0$ as in (2.3). For the second identity, if $\mathbf{v}_{0}$ and $\mathbf{v}_{1}$ are 1-eigenvectors of $T_{0}$ and $T_{1}$ respectively, (2.2) implies that

$$
\left(T_{0}^{n} \mathbf{v}_{0}\right)_{i}=\left(\mathbf{v}_{0}\right)_{i}=\left(\mathbf{v}_{1}\right)_{i-1}=\left(T_{1}^{n} \mathbf{v}_{1}\right)_{i-1}
$$

For the general case we need only apply

$$
T_{j}^{n} \mathbf{v}_{j}^{(1)}= \begin{cases}\sum_{i=0}^{n}\binom{n}{i} \mathbf{v}_{j}^{(i+1)} & \text { if } n<m \\ \sum_{i=0}^{m-1}\binom{n}{i} \mathbf{v}_{j}^{(i+1)} & \text { if } n \geq m\end{cases}
$$

which can be checked directly by using (2.6).
Lemma 2.5. Let $\mathbf{v}$ be a 2-eigenvector of $\left(T_{0}+T_{1}\right)$ and $\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}$. Then $H(\tilde{\mathbf{v}})$ is a subspace of $H$. Moreover, if (i) 1 is a simple eigenvalue of $T_{0}$ and $T_{1}$; or (ii) $H(\tilde{\mathbf{v}})=H$, then for $\mathbf{v}_{0}, \mathbf{v}_{1} \notin H$ as defined in Lemma 2.3, there exists a constant c such that

$$
\mathbf{v}=c \mathbf{v}_{0}+\mathbf{h}_{0}=c \mathbf{v}_{1}+\mathbf{h}_{1}
$$

for some $\mathbf{h}_{0}, \mathbf{h}_{1} \in H(\tilde{\mathbf{v}})$.
Proof. Note that $[1,1, \ldots, 1]^{t}$ is a left 1-eigenvector of $T_{0}$, so that $\left(T_{0}-I\right) \mathbf{u} \in H$ for every $\mathbf{u} \in \mathbb{C}^{n}$. In particular, $\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}$ must be in $H$. Also it is easy to show that $H$ is invariant under $T_{0}$ and $T_{1}$, hence $H(\tilde{\mathbf{v}})$ is a subspace of $H$. Let $\mathbf{v}_{0}$ and $\mathbf{v}_{1}$ be as in Lemma 2.3, then $a=\sum\left(\mathbf{v}_{0}\right)_{i}=\sum\left(\mathbf{v}_{1}\right)_{i} \neq 0$. Let $c=\sum_{i=1}^{N} v_{i} / a$, where $v_{i}$ 's are the coordinates of $\mathbf{v}$ and let

$$
\mathbf{h}_{0}=\mathbf{v}-c \mathbf{v}_{0} \quad \text { and } \quad \mathbf{h}_{1}=\mathbf{v}-c \mathbf{v}_{1} .
$$

By the choice of $c$, we have $\mathbf{h}_{0}, \mathbf{h}_{1} \in H$ which implies case (ii) because $H=H(\tilde{\mathbf{v}})$. In case (i), we observe that if 1 is a simple eigenvalue of $T_{0}$, then $T_{0}-I$ restricted on $H$ is bijective; it is hence also bijective on the $\left(T_{0}-I\right)$-invariant subspace $H(\tilde{\mathbf{v}})$. Consequently,

$$
\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}=\left(T_{0}-I\right)\left(c \mathbf{v}_{0}+\mathbf{h}_{0}\right)=\left(T_{0}-I\right) \mathbf{h}_{0}
$$

so that $\mathbf{h}_{0}$ must be in $H(\tilde{\mathbf{v}})$. The same proof holds for $\mathbf{h}_{1}$.
3. Proof of Theorem B. Let $f$ be an $L_{c}^{p}$-solution of (1.1) and let $\mathbf{v}=$ $\left[f_{[0,1)}, \ldots, f_{[N-1, N)}\right]^{t}$ be the vector defined by the average of $f$ over the $N$-subintervals (see Proposition 2.1), then $\mathbf{v}$ is a 2-eigenvector of $\left(T_{0}+T_{1}\right)$. Let

$$
\mathbf{f}_{n}(x)=\sum_{|J|=n}\left(T_{J} \mathbf{v}\right) \chi_{I_{J}}(x)
$$

and let $f_{n}$ be the corresponding real valued function of $\mathbf{f}_{n}$ defined on $[0, N]$.
Lemma 3.1. For $n \geq 1$ and $\ell \geq 0$,

$$
\begin{aligned}
\int_{0}^{1-2^{-n}} \| \mathbf{f}_{n+\ell}\left(x+2^{-n}\right)- & \mathbf{f}_{n+\ell}(x) \|^{p} d x \\
& =\frac{1}{2^{n+\ell}} \sum_{\left|J^{\prime}\right|=\ell}\left(\sum_{i=1}^{n} \sum_{|J|=n-i}\left\|T_{J}\left(T_{1} T_{0}^{i-1}-T_{0} T_{1}^{i-1}\right) T_{J^{\prime}} \mathbf{v}\right\|^{p}\right)
\end{aligned}
$$

Proof. We divide the interval $\left[0,1-2^{-n}\right)$ into $2^{n}-1$ equal subintervals. For each subinterval, we further divide it into $2^{\ell}$ equal parts. In this way we have $2^{\ell}\left(2^{n}-1\right)$ equal subintervals with length $2^{-(n+\ell)}$. For each such dyadic interval, we can write down its binary representation with length $2^{n+\ell}$, say $I_{\left(j_{1}, \ldots, j_{n}, j_{1}^{\prime}, \ldots, j_{\ell}^{\prime}\right)}$. Since it is contained in $\left[0,1-2^{-n}\right)$, at least one of the $j_{1}, \ldots, j_{n}$ must equal 0 . Suppose $x \in I_{\left(j_{1}, \ldots, j_{n}, j_{1}^{\prime}, \ldots, j_{\ell}^{\prime}\right)}$ with $j_{n-i+1}$ as the last zero in $\left\{j_{1}, \ldots, j_{n}\right\}$, i.e., $x \in I_{\left(j_{1}, \ldots, j_{n-i}, 0,1, \ldots, 1, j_{1}^{\prime}, \ldots, j_{\ell}^{\prime}\right)}$, then
$x+2^{-n} \in I_{\left(j_{1}, \ldots, j_{n-i}, 1,0, \ldots, 0, j_{1}^{\prime}, \ldots, j_{\ell}^{\prime}\right)}$. It follows that

$$
\begin{aligned}
& \mathbf{f}_{n+\ell}\left(x+2^{-n}\right)-\mathbf{f}_{n+\ell}(x) \\
& \quad=T_{j_{1}} \cdots T_{j_{n-i}} T_{1} T_{0}^{i-1}\left(T_{j_{1}^{\prime}} \cdots T_{j_{\ell}^{\prime}} \mathbf{v}\right)-T_{j_{1}} \cdots T_{j_{n-i}} T_{0} T_{1}^{i-1}\left(T_{j_{1}^{\prime}} \cdots T_{j_{\ell}^{\prime}} \mathbf{v}\right) \\
& \quad=T_{j_{1}} \cdots T_{j_{n-i}}\left(T_{1} T_{0}^{i-1}-T_{0} T_{1}^{i-1}\right) T_{j_{1}^{\prime}} \cdots T_{j_{\ell}^{\prime}} \mathbf{v}
\end{aligned}
$$

Since $\mathbf{f}_{n+\ell}\left(x+2^{-n}\right)-\mathbf{f}_{n+\ell}(x)$ is a constant function on each dyadic interval of size $2^{-(n+\ell)}$, an integration over the interval $\left[0,1-2^{-n}\right.$ ) yields the lemma immediately.

We first give a lower bound estimate of $\left\|\Delta_{2^{-n}} f\right\|$.
Proposition 3.2. For $n \geq 1$,

$$
\left\|\Delta_{2^{-n}} f\right\|^{p} \geq \frac{2^{p-1}}{2^{n-1}} \sum_{|J|=n-1}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}
$$

Proof. Fix $n \geq 1$ and for any $\ell \geq 0$,

$$
\begin{aligned}
\left\|\Delta_{2^{-n}} f_{n+\ell}\right\|^{p} & =\int_{-2^{-n}}^{N}\left|f_{n+\ell}\left(x+2^{-n}\right)-f_{n+\ell}(x)\right|^{p} d x \\
& \geq \int_{0}^{1-2^{-n}}\left\|\mathbf{f}_{n+\ell}\left(x+2^{-n}\right)-\mathbf{f}_{n+\ell}(x)\right\|^{p} d x \\
& =\frac{1}{2^{n+\ell}} \sum_{\left|J^{\prime}\right|=\ell}\left(\sum_{i=1}^{n} \sum_{|J|=n-i}\left\|T_{J}\left(T_{1} T_{0}^{i-1}-T_{0} T_{1}^{i-1}\right) T_{J^{\prime}} \mathbf{v}\right\|^{p}\right) \\
& \geq \frac{1}{2^{n+\ell}} \sum_{\left|J^{\prime}\right|=\ell|J|=n-1} \sum_{\text {(by Lemm }}\left\|T_{J}\left(T_{1}-T_{0}\right) T_{J^{\prime}} \mathbf{v}\right\|^{p} \quad \\
& \geq \frac{1}{2^{n}} \sum_{|J|=n-1}\left\|T_{J}\left(T_{1}-T_{0}\right)\left(\frac{1}{2^{\ell}} \sum_{\left|J^{\prime}\right|=\ell} T_{J^{\prime}} \mathbf{v}\right)\right\|^{p} \\
& =\frac{1}{2^{n}} \sum_{|J|=n-1}\left\|T_{J}\left(T_{1}-T_{0}\right) \mathbf{v}\right\|^{p} \quad(\text { by }(2.1)) \\
& =2^{p-1} \frac{1}{2^{n-1}} \sum_{|J|=n-1}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} \quad\left(\text { use }\left(T_{1}-T_{0}\right) \mathbf{v}=-2 \tilde{\mathbf{v}}\right) .
\end{aligned}
$$

(by Lemma 3.1)

The assertion now follows by letting $\ell \rightarrow \infty$.
For the upper bound of $\left\|\Delta_{h} f\right\|$, we need an estimation of the integral of $\left|\Delta_{h} f_{n}(x)\right|$ near the integers $k=0, \ldots, N$.

Lemma 3.3. Under the same assumptions as in Lemma 2.5, for $n>0$ and for $0<h<2^{-n}$,

$$
\int_{E_{n}}\left|\Delta_{h} f_{n}(x)\right|^{p} d x \leq 2^{p} h\left(\left\|T_{0}^{n} \mathbf{h}_{0}\right\|^{p}+\left\|T_{1}^{n} \mathbf{h}_{1}\right\|^{p}\right)
$$

where $E_{n}=\bigcup_{k=0}^{N}\left[k-2^{-n}, k\right)$.

Proof. Since $f_{n}$ is a constant function on the dyadic intervals of size $2^{-n}$, we have

$$
\begin{aligned}
\int_{E_{n}}\left|\Delta_{h} f_{n}(x)\right|^{p} d x & =\sum_{k=0}^{N} \int_{k-2^{-n}}^{k}\left|f_{n}(x+h)-f_{n}(x)\right|^{p} d x \\
& =\sum_{k=0}^{N} \int_{k-h}^{k}\left|f_{n}(x+h)-f_{n}(x)\right|^{p} d x \\
& =h\left(\left|\left(T_{0}^{n} \mathbf{v}\right)_{1}\right|^{p}+\sum_{i=2}^{N}\left|\left(T_{0}^{n} \mathbf{v}\right)_{i}-\left(T_{1}^{n} \mathbf{v}\right)_{i-1}\right|^{p}+\left|-\left(T_{1}^{n} \mathbf{v}\right)_{N}\right|^{p}\right)
\end{aligned}
$$

Recall that $\mathbf{v}=c \mathbf{v}_{0}+\mathbf{h}_{0}=c \mathbf{v}_{1}+\mathbf{h}_{1}$ as in Lemma 2.5. Therefore, by Corollary 2.4(iii),

$$
\left(T_{0}^{n} \mathbf{v}\right)_{1}=c\left(T_{0}^{n} \mathbf{v}_{0}\right)_{1}+\left(T_{0}^{n} \mathbf{h}_{0}\right)_{1}=\left(T_{0}^{n} \mathbf{h}_{0}\right)_{1}
$$

and similarly $\left(T_{1}^{n} \mathbf{v}\right)_{N}=\left(T_{1}^{n} \mathbf{h}_{1}\right)_{N}$. Also for $2 \leq i \leq N$, by Corollary 2.4(iii) again,

$$
\begin{aligned}
\left(T_{0}^{n} \mathbf{v}\right)_{i}-\left(T_{1}^{n} \mathbf{v}\right)_{i-1} & =c\left(T_{0}^{n} \mathbf{v}_{0}\right)_{i}+\left(T_{0}^{n} \mathbf{h}_{0}\right)_{i}-c\left(T_{1}^{n} \mathbf{v}_{1}\right)_{i-1}-\left(T_{1}^{n} \mathbf{h}_{1}\right)_{i-1} \\
& =\left(T_{0}^{n} \mathbf{h}_{0}\right)_{i}-\left(T_{1}^{n} \mathbf{h}_{1}\right)_{i-1}
\end{aligned}
$$

We can continue the above estimation:

$$
\begin{aligned}
\int_{E_{n}}\left|\Delta_{h} f_{n}(x)\right|^{p} d x & =h\left(\left|\left(T_{0}^{n} \mathbf{h}_{0}\right)_{1}\right|^{p}+\sum_{i=2}^{N}\left|\left(T_{0}^{n} \mathbf{h}_{0}\right)_{i}-\left(T_{1}^{n} \mathbf{h}_{1}\right)_{i-1}\right|^{p}+\left|\left(T_{1}^{n} \mathbf{h}_{1}\right)_{N}\right|^{p}\right) \\
& \leq 2^{p} h\left(\left[\left\|T_{0}^{n} \mathbf{h}_{0}\right\|^{p}+\left\|T_{1}^{n} \mathbf{h}_{1}\right\|^{p}\right)\right.
\end{aligned}
$$

and complete the proof.
Proposition 3.4. Under the same assumptions as in Lemma 2.5, we have for $0<h<2^{-n}$,

$$
\left\|\Delta_{h} f_{n}\right\|^{p} \leq \frac{2^{p+1}}{2^{n}}\left(\sum_{|J|=n}\left\|T_{J} \mathbf{h}_{0}\right\|^{p}+\sum_{|J|=n}\left\|T_{J} \mathbf{h}_{1}\right\|^{p}\right)
$$

Proof. Let $E_{n}=\bigcup_{k=0}^{N}\left[k-2^{-n}, k\right)$ and $\tilde{E}_{n}=\left[-2^{-n}, N\right) \backslash E_{n}=\bigcup_{k=0}^{N-1}[k, k+1-$ $2^{-n}$ ). Since $f_{n}$ is supported by $[0, N]$, we have

$$
\begin{aligned}
\left\|\Delta_{h} f_{n}\right\|^{p} & =\int_{-2^{-n}}^{N}\left|\Delta_{h} f_{n}(x)\right|^{p} d x \\
& =\int_{E_{n}}\left|\Delta_{h} f_{n}(x)\right|^{p} d x+\int_{\tilde{E}_{n}}\left|\Delta_{h} f_{n}(x)\right|^{p} d x \\
& :=I_{1}+I_{2}
\end{aligned}
$$

Lemma 3.3 implies that

$$
I_{1} \leq 2^{p} h\left(\left\|T_{0}^{n} \mathbf{h}_{0}\right\|^{p}+\left\|T_{1}^{n} \mathbf{h}_{1}\right\|^{p}\right)
$$

On the other hand, if we write $I_{2}$ in the vector form, we have

$$
\begin{aligned}
I_{2} & =\int_{0}^{1-2^{-n}}\left\|\mathbf{f}_{n}(x+h)-\mathbf{f}_{n}(x)\right\|^{p} d x \\
& =h \sum_{k=1}^{n} \sum_{|J|=n-k}\left\|T_{J}\left(T_{1} T_{0}^{k-1}-T_{0} T_{1}^{k-1}\right) \mathbf{v}\right\|^{p}
\end{aligned}
$$

From Corollary 2.4(ii) we conclude that

$$
\begin{aligned}
\left(T_{1} T_{0}^{k-1}-T_{0} T_{1}^{k-1}\right) \mathbf{v} & =T_{1} T_{0}^{k-1}\left(c \mathbf{v}_{0}+\mathbf{h}_{0}\right)-T_{0} T_{1}^{k-1}\left(c \mathbf{v}_{1}+\mathbf{h}_{1}\right) \\
& =T_{1} T_{0}^{k-1} \mathbf{h}_{0}-T_{0} T_{1}^{k-1} \mathbf{h}_{1}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
I_{2} & \leq 2^{p} h\left(\sum_{k=1}^{n} \sum_{|J|=n-k}\left\|T_{J} T_{1} T_{0}^{k-1} \mathbf{h}_{0}\right\|^{p}+\sum_{k=1}^{n} \sum_{|J|=n-k}\left\|T_{J} T_{0} T_{1}^{k-1} \mathbf{h}_{1}\right\|^{p}\right) \\
& \leq 2^{p} h\left(\sum_{|J|=n}\left\|T_{J} \mathbf{h}_{0}\right\|^{p}+\sum_{|J|=n}\left\|T_{J} \mathbf{h}_{1}\right\|^{p}\right)
\end{aligned}
$$

The lemma then follows from the two estimates of $I_{1}$ and $I_{2}$.
We can now state and prove our main theorem of this section (i.e. Theorem B in Section 1).

THEOREM 3.5. Suppose that either (i) 1 is a simple eigenvalue of $T_{0}$ and $T_{1}$ or (ii) $H(\tilde{\mathbf{v}})=\left\{\mathbf{u} \in \mathbb{C}^{N}: \sum_{i=1}^{N} u_{i}=0\right\}$. If $f$ is a $L_{c}^{p}$-solution of (1.1), then

$$
\operatorname{Lip}_{p}(f)=\liminf _{n \rightarrow \infty} \frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}\right)}{p \ln \left(2^{-n}\right)}
$$

Proof. As a direct consequence of Proposition 3.2, we have

$$
\operatorname{Lip}_{p}(f) \leq \liminf _{n \rightarrow \infty} \frac{\ln \left\|\Delta_{2^{-n}} f\right\|}{\ln \left(2^{-n}\right)} \leq \liminf _{n \rightarrow \infty} \frac{\ln \left(2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}\right)}{p \ln \left(2^{-n}\right)}
$$

To prove the reverse inequality we first observe that $\left\|\Delta_{h} f\right\| \leq 2\left\|f-f_{n}\right\|+\left\|\Delta_{h} f_{n}\right\|$. Proposition 2.1 (iii) and Proposition 3.4 imply that

$$
\left\|\Delta_{h} f\right\|^{p} \leq C\left(2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}+2^{-n} \sum_{|J|=n}\left\|T_{J} \mathbf{h}_{0}\right\|^{p}+2^{-n} \sum_{|J|=n}\left\|T_{J} \mathbf{h}_{1}\right\|^{p}\right)
$$

for some constant $C$ independent of $n$. Since $\tilde{\mathbf{v}}, \mathbf{h}_{0}, \mathbf{h}_{1}$ are all in $H(\tilde{\mathbf{v}})$, we can apply Lemma 2.2 to have the reverse inequality.
4. $\operatorname{Lip}_{p}(f)$ for some special cases. For the 2 -coefficient dilation equation $f(x)=f(2 x)+f(2 x-1)$, the scaling function is $\chi_{[0,1)}$ and it is easy to calculate that $\operatorname{Lip}_{p}(f)=1 / p$ from the definition.

Proposition 4.1. If $f$ is an $L_{c}^{p}$-solution of $f(x)=c_{0} f(2 x)+c_{1} f(2 x-1)+$ $c_{2} f(2 x-2)$ with $c_{0}+c_{2}=1, c_{1}=1$, and $c_{0}, c_{2} \neq 0$, then

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|1-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}
$$

Proof. In this case,

$$
T_{0}=\left(\begin{array}{cc}
c_{0} & 0 \\
1-c_{0} & 1
\end{array}\right) \quad \text { and } \quad T_{1}=\left(\begin{array}{cc}
1 & c_{0} \\
0 & 1-c_{0}
\end{array}\right),
$$

and $\mathbf{v}=\left[c_{0}, c_{0}-1\right]^{t}$ is a 2-eigenvector of $\left(T_{0}+T_{1}\right)$. Then

$$
\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}=\binom{c_{0}\left(c_{0}-1\right)}{-c_{0}\left(c_{0}-1\right)} \neq 0 .
$$

Note that $\tilde{\mathbf{v}}$ is an $c_{0}$-eigenvector of $T_{0}$ and $\left(1-c_{0}\right)$-eigenvector of $T_{1}$. A straight-forward calculation yields

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} & =\frac{1}{2^{n}}\left(\sum_{k=0}^{n}\binom{n}{k}\left(\left|c_{0}\right|^{p}\right)^{k}\left(\left|1-c_{0}\right|^{p}\right)^{n-k}\right)\|\tilde{\mathbf{v}}\|^{p} \\
& =\left(\frac{\left|c_{0}\right|^{p}+\left|1-c_{0}\right|^{p}}{2}\right)^{n}\|\tilde{\mathbf{v}}\|^{p} .
\end{aligned}
$$

This implies that

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|1-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}
$$

We now turn to the 4 -coefficient dilation equation

$$
\begin{equation*}
f(x)=c_{0} f(2 x)+c_{1} f(2 x-1)+c_{2} f(2 x-2)+c_{3} f(2 x-3) \tag{4.1}
\end{equation*}
$$

with $c_{0}+c_{2}=c_{1}+c_{3}=1$ and $c_{0}, c_{3} \neq 0$. We first observe that

$$
T_{0}=\left(\begin{array}{ccc}
c_{0} & 0 & 0  \tag{4.2}\\
1-c_{0} & 1-c_{3} & c_{0} \\
0 & c_{3} & 1-c_{0}
\end{array}\right), \quad T_{1}=\left(\begin{array}{ccc}
1-c_{3} & c_{0} & 0 \\
c_{3} & 1-c_{0} & 1-c_{3} \\
0 & 0 & c_{3}
\end{array}\right) .
$$

The eigenvalues of $\left(T_{0}+T_{1}\right)$ are 2 , 1 , and $\left(1-c_{0}-c_{3}\right)$, and the 2-eigenvector $\mathbf{v}$ is

$$
\mathbf{v}=\left(\begin{array}{c}
c_{0}\left(1+c_{0}-c_{3}\right)  \tag{4.3}\\
\left(1+c_{0}-c_{3}\right)\left(1-c_{0}+c_{3}\right) \\
c_{3}\left(1-c_{0}+c_{3}\right)
\end{array}\right)
$$

Therefore

$$
\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}=\left(\begin{array}{c}
c_{0}\left(c_{0}-1\right)\left(1+c_{0}-c_{3}\right)  \tag{4.4}\\
-c_{0}\left(c_{0}-1\right)\left(1+c_{0}-c_{3}\right)+c_{3}\left(c_{3}-1\right)\left(1-c_{0}+c_{3}\right) \\
-c_{3}\left(c_{3}-1\right)\left(1-c_{0}+c_{3}\right)
\end{array}\right) .
$$

Note that in Proposition 4.1, the computation can be made easier if $\tilde{\mathbf{v}}$ is an eigenvector of both $T_{0}$ and $T_{1}$. Here we have

Lemma 4.2. Let $T_{0}$ and $T_{1}$ be as in (4.2) and let $\mathbf{v}$ be the 2 -eigenvector of $\left(T_{0}+T_{1}\right)$ as in (4.3) and let $\tilde{\mathbf{v}}=\left(T_{0}-I\right) \mathbf{v}$. Then $\tilde{\mathbf{v}}$ is an eigenvector of both $T_{0}$ and $T_{1}$ (not necessary to the same eigenvalue) if and only if $c_{0}+c_{3}=1$.

Proof. Suppose $c_{0}+c_{3}=1$, then $c_{0}=c_{1}, c_{2}=c_{3}$, and (4.2) reduces to

$$
T_{0}=\left(\begin{array}{ccc}
c_{0} & 0 & 0 \\
1-c_{0} & c_{0} & c_{0} \\
0 & 1-c_{0} & 1-c_{0}
\end{array}\right), \quad T_{1}=\left(\begin{array}{ccc}
c_{0} & c_{0} & 0 \\
1-c_{0} & 1-c_{0} & c_{0} \\
0 & 0 & 1-c_{0}
\end{array}\right)
$$

and $\tilde{\mathbf{v}}=\left[-2 c_{0}^{2} c_{3}, 2 c_{0}^{2} c_{3}-2 c_{0} c_{3}^{2}, 2 c_{0} c_{3}^{2}\right]^{t} \neq 0$. By a direct calculation, $\tilde{\mathbf{v}}$ is a $c_{0^{-}}$ eigenvector of $T_{0}$ and $\left(1-c_{0}\right)$-eigenvector of $T_{1}$.

Conversely, suppose $\tilde{\mathbf{v}}$ is an eigenvector of both $T_{0}$ and $T_{1}$. Let $\mathbf{u}_{0}=[0,1,-1]^{t}$ and $\mathbf{u}_{1}=[1,-1,0]^{t}$, then $\tilde{\mathbf{v}}=a \mathbf{u}_{0}+b \mathbf{u}_{1}$ where $a$ and $b$ is determined by (4.4). By using $\mathbf{u}_{0}$ and $\mathbf{u}_{1}$ as a basis of the subspace $H=\left\{\mathbf{u} \in \mathbb{C}^{3}: \sum u_{i}=0\right\}$, we can rewrite $T_{0}, T_{1}$ (restricted on $H$ ) and $\tilde{\mathbf{v}}$ as follows:

$$
T_{0}=\left(\begin{array}{cc}
1-c_{0}-c_{3} & c_{3}  \tag{4.5}\\
0 & c_{0}
\end{array}\right), \quad T_{1}=\left(\begin{array}{cc}
c_{3} & 0 \\
c_{0} & 1-c_{0}-c_{3}
\end{array}\right), \quad \text { and } \quad \tilde{\mathbf{v}}=\binom{a}{b}
$$

Note that $T_{0}$ has $c_{0}$ and $1-c_{0}-c_{3}$ as eigenvalues while $T_{1}$ has $c_{3}$ and $1-c_{0}-c_{3}$ as eigenvalues. We claim that $\tilde{\mathbf{v}}$ is an $c_{0}$-eigenvector of $T_{0}$. For otherwise, $\tilde{\mathbf{v}}$ is an $\left(1-c_{0}-c_{3}\right)$-eigenvector of $T_{0}$, then $b$ must be zero and $\tilde{\mathbf{v}}=[a, 0]^{t}$. But this contradicts to the assumption that $\tilde{\mathbf{v}}$ is an eigenvector of $T_{1}$. Similarly, $\tilde{\mathbf{v}}$ must be a $c_{3}$-eigenvector of $T_{1}$. Hence,

$$
\left(T_{0}+T_{1}\right) \tilde{\mathbf{v}}=\left(c_{0}+c_{3}\right) \tilde{\mathbf{v}}
$$

There are only three choices of the eigenvalues of $T_{0}+T_{1}: 2,1$ or $1-c_{0}-c_{3}$. By a direct check we conclude that $c_{0}+c_{3}=1$ is the only allowable case.

In view of Lemma 4.2 we can use the same technique as in Proposition 4.1 to prove the next proposition

Proposition 4.3. If $f$ is an $L_{c}^{p}$-solution of (4.1) with the additional assumption that $c_{0}+c_{3}=1$, then

$$
\begin{equation*}
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|1-c_{0}\right|^{p}\right)\right) / 2}{-p \ln 2} \tag{4.6}
\end{equation*}
$$

In Figure 1, we draw the graphs of some scaling functions satisfying the assumption in the above proposition and their $L^{p}$-Lipschitz exponents. Note that if $\operatorname{Lip}_{p}(f)=1$ for all $1 \leq p<\infty$, then $f$ is differentiable almost everywhere and the derivative is in $L^{p}$ for all $1 \leq p<\infty$. This is the case for $c_{0}=0.5$ and is obvious from the graph of the corresponding scaling function. For the graph of $c_{0}=1.125$, we see that $\operatorname{Lip}_{p}(f)$ is undefined for $p>6$. Indeed $f \notin L^{p}(\mathbb{R})$, for $p>6$, making use of the criterion in Theorem A.

We conclude this section by giving a formula of $\operatorname{Lip}_{p}(f)$ with the coefficients satisfying $c_{0}+c_{3}=\frac{1}{2}$ instead of $c_{0}+c_{3}=1$. It includes Daubechies scaling function $D_{4}$ which corresponds to $c_{0}=(1+\sqrt{3}) / 4, c_{3}=(1-\sqrt{3}) / 4$. This formula has been obtained in [DL3] using a different method and assuming in addition that $\frac{1}{2}<c_{0}<\frac{3}{4}$. Here, we need an estimation on the product of two non-commutative matrices.

Lemma 4.4. Let $\beta_{0}, \beta_{1} \in \mathbb{R}$. Let

$$
P_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \beta_{0}
\end{array}\right) \quad \text { and } \quad P_{1}=\left(\begin{array}{cc}
1 & 0 \\
\beta_{0} & \beta_{1}
\end{array}\right)
$$

For any multi-index $J=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$, we let $P_{J}=P_{j_{1}} \cdots P_{j_{n}}$. Then

$$
P_{J}=\left(\begin{array}{cc}
1 & 0 \\
\lambda_{J} & \mu_{J}
\end{array}\right)
$$

where $\lambda_{J}=\beta_{0}\left(j_{1}+j_{2} \beta_{j_{1}}+\cdots+j_{n}\left(\beta_{j_{n-1}} \cdots \beta_{j_{1}}\right)\right)$ and $\mu_{J}=\beta_{j_{n}} \beta_{j_{n-1}} \cdots \beta_{j_{1}}$. Let


Figure 1a


Figure 1c


Figure 1b


Figure 1d


Figure 1e
$\gamma=\left(\left|\beta_{0}\right|^{p}+\left|\beta_{1}\right|^{p}\right) / 2$. Then

$$
2^{-n} \sum_{|J|=n}\left|\mu_{J}\right|^{p}=\gamma^{n} \quad \text { and } \quad 2^{-n} \sum_{|J|=n}\left|\lambda_{J}\right|^{p} \leq C n^{p} \max \left\{1, \gamma^{n}\right\}
$$

for some constant $C>0$ independent of $n$.
Proof. The explicit form of the product $P_{J}$ can easily be shown by induction. For the second part of the lemma, the first identity follows from

$$
2^{-n} \sum_{|J|=n}\left|\mu_{J}\right|^{p}=2^{-n} \sum_{j_{1}, \ldots, j_{n}=0,1}\left|\beta_{j_{n}} \cdots \beta_{j_{1}}\right|^{p}=\gamma^{n}
$$

For the second identity we observe that

$$
\begin{aligned}
\left(\sum_{|J|=n}\left|\lambda_{J}\right|^{p}\right)^{\frac{1}{p}} & =\left|\beta_{0}\right|\left(\sum_{j_{1}, \ldots, j_{n}=0,1}\left|j_{1}+\sum_{i=2}^{n} j_{i}\left(\beta_{j_{i-1}} \cdots \beta_{j_{1}}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& \leq\left|\beta_{0}\right|\left(2^{(n-1) / p}+\sum_{i=2}^{n}\left(\sum_{j_{1}, \ldots, j_{n}=0,1}\left|j_{i}\left(\beta_{j_{i-1}} \cdots \beta_{j_{1}}\right)\right|^{p}\right)^{\frac{1}{p}}\right)
\end{aligned}
$$

(by Minkowski inequality)
$=\left|\beta_{0}\right|\left(2^{(n-1) / p}+\sum_{i=2}^{n}\left(\left|\beta_{0}\right|^{p}+\left|\beta_{1}\right|^{p}\right)^{(i-1) / p}\right)$

$$
\leq\left|\beta_{0}\right| 2^{(n-1) / p} \sum_{i=1}^{n}\left(\gamma^{1 / p}\right)^{i-1}
$$

$$
\leq\left|\beta_{0}\right| n 2^{(n-1) / p} \max \left\{1,\left(\gamma^{1 / p}\right)^{n}\right\}
$$

The last identity now follows.
Proposition 4.5. If $f$ is the $L_{c}^{p}$-solution of (4.1) with the additional assumption that $c_{0}+c_{3}=\frac{1}{2}$, then

$$
\begin{equation*}
\operatorname{Lip}_{p}(f)=\min \left\{1, \frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|\frac{1}{2}-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}\right\} \tag{4.7}
\end{equation*}
$$

Proof. In this case, (4.2) reduces to

$$
T_{0}=\left(\begin{array}{ccc}
c_{0} & 0 & 0 \\
1-c_{0} & \frac{1}{2}+c_{0} & c_{0} \\
0 & \frac{1}{2}-c_{0} & 1-c_{0}
\end{array}\right) \quad \text { and } \quad T_{1}=\left(\begin{array}{ccc}
\frac{1}{2}+c_{0} & c_{0} & 0 \\
\frac{1}{2}-c_{0} & 1-c_{0} & \frac{1}{2}+c_{0} \\
0 & 0 & \frac{1}{2}-c_{0}
\end{array}\right)
$$

Note that $\mathbf{h}=[1,-2,1]^{t}$ is a $c_{0}$-eigenvector of $T_{0}$ and also a $\left(\frac{1}{2}-c_{0}\right)$-eigenvector of $T_{1}$. It is clear that

$$
2^{-n} \sum_{|J|=n}\left\|T_{J} \mathbf{h}\right\|^{p}=2^{-n}\left(\left|c_{0}\right|^{p}+\left|\frac{1}{2}-c_{0}\right|^{p}\right)^{n}\|\mathbf{h}\|^{p}
$$

Since $\mathbf{h} \in H(\tilde{\mathbf{v}})$, by Lemma 2.2, we have

$$
\operatorname{Lip}_{p}(f) \leq \frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|\frac{1}{2}-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}
$$

Next observe that $\mathbf{u}=[0,1,-1]^{t}$ is a $\frac{1}{2}$-eigenvector of $T_{0}$ and $T_{1} \mathbf{u}=\frac{1}{2} \mathbf{u}+c_{0} \mathbf{h}$. Therefore, by using $\mathbf{u}$ and $\mathbf{h}$ as a basis of the subspace $H(\tilde{\mathbf{v}})$, we can rewrite $T_{0}, T_{1}$, restricted on $H(=H(\tilde{\mathbf{v}})$ in this case $)$, and $\tilde{\mathbf{v}}$, as

$$
T_{0}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & c_{0}
\end{array}\right), \quad T_{1}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
c_{0} & \frac{1}{2}-c_{0}
\end{array}\right), \quad \text { and } \quad \tilde{\mathbf{v}}=\binom{a}{b}
$$

where $a=-\frac{1}{4}$ and $b=\frac{2}{3} c_{0}\left(c_{0}-1\right)\left(\frac{1}{2}+2 c_{0}\right)$. Let $\beta_{0}=2 c_{0}$ and $\beta_{1}=1-\beta_{0}$. For $J=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$, we have $T_{J}=\frac{1}{2^{n}} P_{J}$, so that

$$
\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}=\left|a 2^{-n}\right|^{p}+\left|2^{-n}\left(a \lambda_{J}+b \mu_{J}\right)\right|^{p}
$$

where $\lambda_{J}$ and $\mu_{J}$ are defined as in Lemma 4.4. This implies $\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} \geq\left|a 2^{-n}\right|^{p}$ and $\operatorname{Lip}_{p}(f) \leq 1$ by Theorem 3.5. Hence

$$
\begin{equation*}
\operatorname{Lip}_{p}(f) \leq \min \left\{1, \frac{\ln \left(\left(\left|c_{0}\right|^{p}+\left|\frac{1}{2}-c_{0}\right|^{p}\right) / 2\right)}{-p \ln 2}\right\} \tag{4.8}
\end{equation*}
$$

On the other hand,

$$
\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} \leq\left|a 2^{-n}\right|^{p}+2^{p}\left|a 2^{-n} \lambda_{J}\right|^{p}+2^{p}\left|b 2^{-n} \mu_{J}\right|^{p}
$$

By Lemma 4.4, we have

$$
\begin{aligned}
2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p} & \leq C n^{p} 2^{-p n} \max \left\{1,\left(\left(\left|\beta_{0}\right|^{p}+\left|\beta_{1}\right|^{p}\right) / 2\right)^{n}\right\} \\
& =C n^{p} \max \left\{2^{-p n},\left(\left(\left|\beta_{0} / 2\right|^{p}+\left|\beta_{1} / 2\right|^{p}\right) / 2\right)^{n}\right\}
\end{aligned}
$$

Consequently we have the reverse inequality of (4.8) and completes the proof.
In figures $2 \mathrm{a}-\mathrm{e}$ we again sketch some $L_{c}^{p}$-scaling functions from Proposition 4.5 $\left(c_{0}+c_{3}=\frac{1}{2}\right)$ and their $L^{p}$-Lipschitz exponents $\operatorname{Lip}_{p}(f)$ of $p$. The case for $c_{0}=0.25$ corresponding to $\chi_{[0,1]} * \chi_{[0,1]}$, it is differentiable and hence $\operatorname{Lip}_{p}(f)=1$ for all $p$. The case corresponding to $c_{0}=0.683 \ldots$ is the Daubechies scaling function $D_{4}$. From the picture of $\operatorname{Lip}_{p}(f), D_{4}$ has $L^{p}$-derivative for $1 \leq p<2$. It is known that for $p=2, D_{4}$ is differentiable almost everywhere but the derivative is not in $L^{2}$. Also it is known that the Hölder exponent of $D_{4}$ is $2-\ln (1+\sqrt{3}) / \ln 2$, which is the same number as the formula in the proposition when $p \rightarrow \infty$.
5. $\operatorname{Lip}_{p}(f)$ when $p$ is a positive even integer. The computation of $\operatorname{Lip}_{p}(f)$ in Section 4 depends on the existence of an eigenvector of both $T_{0}$ and $T_{1}$ (which may be associated with different eigenvalues). This technique cannot be used for the general case. In this section we show that if $p$ is a positive even integer, then $\operatorname{Lip}_{p}(f)$ is related to the spectral radius of a matrix $W_{p}$ whose entries are induced from the coefficients of the dilation equation. For simplicity, we only give the construction of $W_{p}$ for the 4 -coefficient dilation equation. It is not hard to extend this to the case with more coefficients.

In view of Theorem 3.5, we will first develop a simple expression for the sum $2^{-n} \sum_{|J|=n}\left\|T_{J} \tilde{\mathbf{v}}\right\|^{p}$ for $p$ a positive even integer. Let $[0,1,-1]^{t}$ and $[1,-1,0]^{t}$ be a basis of $H=\left\{\mathbf{u} \in \mathbb{C}^{3}: \sum u_{i}=0\right\}$. Then $T_{0}$ and $T_{1}$ can be written as in (4.5). Let $\mathbf{e}_{0}=[1,0], \mathbf{e}_{1}=[0,1]$. For a fixed $\mathbf{u}=[\alpha, \beta]^{t} \in H(\tilde{\mathbf{v}})$ (to be determined later), we



Figure 2a


Figure 2c


Figure 2b


Figure 2d


Figure 2e
define the vector $\mathbf{a}_{n}$ with the $i$-th entry by

$$
\left(\mathbf{a}_{n}\right)_{i}=\sum_{|J|=n}\left(\mathbf{e}_{0} T_{J} \mathbf{u}\right)^{p-i}\left(\mathbf{e}_{1} T_{J} \mathbf{u}\right)^{i}, \quad i=0, \ldots, p
$$

If $p$ is an even integer, then

$$
\begin{align*}
\sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p} & =\sum_{|J|=n}\left(\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p}+\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{p}\right) \\
& =\left(\mathbf{a}_{n}\right)_{0}+\left(\mathbf{a}_{n}\right)_{p}=\left|\left(\mathbf{a}_{n}\right)_{0}\right|+\left|\left(\mathbf{a}_{n}\right)_{p}\right| \tag{5.1}
\end{align*}
$$

Note that $\mathbf{a}_{0}=\left[\alpha^{p}, \alpha^{p-1} \beta, \ldots, \alpha \beta^{p-1}, \beta^{p}\right]^{t}$. If we let $d=1-c_{0}-c_{3}$, we have, in view of (4.5),

$$
\begin{array}{ll}
\mathbf{e}_{0} T_{0}=d \mathbf{e}_{0}+c_{3} \mathbf{e}_{1}, & \mathbf{e}_{1} T_{0}=c_{0} \mathbf{e}_{1}, \\
\mathbf{e}_{0} T_{1}=c_{3} \mathbf{e}_{0}, & \mathbf{e}_{1} T_{1}=c_{0} \mathbf{e}_{0}+d \mathbf{e}_{1},
\end{array}
$$

and hence

$$
\begin{aligned}
\left(\mathbf{a}_{n+1}\right)_{i}= & \sum_{|J|=n+1}\left(\mathbf{e}_{0} T_{J} \mathbf{u}\right)^{p-i}\left(\mathbf{e}_{1} T_{J} \mathbf{u}\right)^{i} \\
= & \sum_{|J|=n}\left(\mathbf{e}_{0} T_{0} T_{J} \mathbf{u}\right)^{p-i}\left(\mathbf{e}_{1} T_{0} T_{J} \mathbf{u}\right)^{i}+\sum_{|J|=n}\left(\mathbf{e}_{0} T_{1} T_{J} \mathbf{u}\right)^{p-i}\left(\mathbf{e}_{1} T_{1} T_{J} \mathbf{u}\right)^{i} \\
= & \sum_{|J|=n}\left(\left(d \mathbf{e}_{0}+c_{3} \mathbf{e}_{1}\right) T_{J} \mathbf{u}\right)^{p-i}\left(c_{0} \mathbf{e}_{1} T_{J} \mathbf{u}\right)^{i} \\
& +\sum_{|J|=n}\left(\left(c_{3} \mathbf{e}_{0}\right) T_{J} \mathbf{u}\right)^{p-i}\left(c_{0} \mathbf{e}_{0}+d \mathbf{e}_{1} T_{J} \mathbf{u}\right)^{i} \\
= & \sum_{|J|=n}\left(\sum_{\ell=0}^{p-i}\binom{p-i}{\ell} d^{p-i-\ell}\left(\mathbf{e}_{0} T_{J} \mathbf{u}\right)^{p-i-\ell} c_{3}^{\ell}\left(\mathbf{e}_{1} T_{J} \mathbf{u}\right)^{\ell}\right)\left(c_{0}^{i}\left(\mathbf{e}_{1} T_{J} \mathbf{u}\right)^{i}\right) \\
& \quad+\sum_{|J|=n}\left(c_{3}^{p-i}\left(\mathbf{e}_{0} T_{J} \mathbf{u}\right)^{p-i}\right)\left(\sum_{\ell=0}^{i}\binom{i}{\ell} c_{0}^{i-\ell}\left(\mathbf{e}_{0} T_{J} \mathbf{u}\right)^{i-\ell} d^{\ell}\left(\mathbf{e}_{1} T_{J} \mathbf{u}\right)^{\ell}\right) \\
= & \sum_{\ell=0}^{p-i}\binom{p-i}{\ell} c_{0}^{i} c_{3}^{\ell} d^{p-i-\ell}\left(\mathbf{a}_{n}\right)_{i+\ell}+\sum_{\ell=0}^{i}\binom{i}{\ell} c_{0}^{i-\ell} c_{3}^{p-i} d^{\ell}\left(\mathbf{a}_{n}\right)_{\ell} .
\end{aligned}
$$

Summarizing the above, we have
Proposition 5.1. For any integer $p \geq 1$, let $W_{p}$ be the $(p+1) \times(p+1)$ matrix defined by

$$
\left(W_{p}\right)_{i j}= \begin{cases}\binom{p-i}{j-i} c_{0}^{i} c_{3}^{j-i} d^{p-j} & \text { for } 0 \leq i<j \leq p \\ c_{0}^{i} d^{p-i}+c_{3}^{p-i} d^{i} & \text { for } i=j \\ \binom{i}{j} c_{0}^{i-j} c_{3}^{p-i} d^{j} & \text { for } 0 \leq j<i \leq p\end{cases}
$$

where $d=1-c_{0}-c_{3}$. Then

$$
\mathbf{a}_{n+1}=W_{p} \mathbf{a}_{n}=W_{p}^{n+1} \mathbf{a}_{0}
$$

where $\mathbf{a}_{0}=\left[\alpha^{p}, \alpha^{p-1} \beta, \ldots, \alpha \beta^{p-1}, \beta^{p}\right]^{t}$. In particular if $p$ is an even integer, then

$$
\sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}=[1,0,0, \cdots, 0,1] W_{p}^{n} \mathbf{a}_{0}
$$

The matrix $W_{p}$ can be written as $W_{p}=W_{p}^{(L)}+W_{p}^{(U)}$, where $W_{p}^{(L)}$ and $W_{p}^{(U)}$ are the lower and upper triangular part of $W_{p}$, in a very symmetric manner. For example,

$$
\begin{aligned}
& W_{2}^{(L)}=\left(\begin{array}{ccc}
\binom{0}{0} c_{3}^{2} & 0 & 0 \\
\binom{1}{0} c_{0} c_{3} & \binom{1}{1} c_{3} d & 0 \\
\binom{2}{0} c_{0}^{2} & \binom{2}{1} c_{0} d & \binom{2}{2} d^{2}
\end{array}\right), \quad W_{2}^{(U)}=\left(\begin{array}{ccc}
\binom{2}{0} d^{2} & \binom{2}{1} c_{3} d & \binom{2}{2} c_{3}^{2} \\
0 & \binom{1}{0} c_{0} d & \binom{1}{1} c_{0} c_{3} \\
0 & 0 & \binom{0}{0} c_{0}^{2}
\end{array}\right) ; \\
& W_{4}^{(L)}=\left(\begin{array}{ccccc}
\binom{0}{0} c_{3}^{4} & 0 & 0 & 0 & 0 \\
\binom{1}{0} c_{0} c_{3}^{3} & \binom{1}{1} c_{3}^{3} d & 0 & 0 & 0 \\
\binom{2}{0} c_{0}^{2} c_{3}^{2} & \binom{2}{1} c_{0} c_{3}^{2} d & \binom{2}{2} c_{3}^{2} d^{2} & 0 & 0 \\
\binom{3}{0} c_{0}^{3} c_{3} & \binom{3}{1} c_{0}^{2} c_{3} d & \binom{3}{2} c_{0} c_{3} d^{2} & \binom{3}{3} c_{3} d^{3} & 0 \\
\binom{4}{0} c_{0}^{4} & \binom{4}{1} c_{0}^{3} d & \binom{4}{2} c_{0}^{2} d^{2} & \binom{4}{3} c_{0} d^{3} & \binom{4}{4} d^{4}
\end{array}\right), \\
& W_{4}^{(U)}=\left(\begin{array}{ccccc}
\binom{4}{0} d^{4} & \binom{4}{1} c_{3} d^{3} & \binom{4}{2} c_{3}^{2} d^{2} & \binom{4}{3} c_{3}^{3} d & \binom{4}{4} c_{3}^{4} \\
0 & \binom{3}{0} c_{0} d^{3} & \binom{3}{1} c_{0} c_{3} d^{2} & \binom{3}{2} c_{0} c_{3}^{2} d & \binom{3}{3} c_{0} c_{3}^{3} \\
0 & 0 & \binom{2}{0} c_{0}^{2} d^{2} & \binom{2}{1} c_{0}^{2} c_{3} d & \binom{2}{2} c_{0}^{2} c_{3}^{2} \\
0 & 0 & 0 & \binom{1}{0} c_{0}^{3} d & \binom{1}{1} c_{0}^{3} c_{3} \\
0 & 0 & 0 & 0 & \binom{0}{0} c_{0}^{4}
\end{array}\right) .
\end{aligned}
$$

Recall from basic linear algebra that if $\rho(A)$ is the spectral radius of an $N \times N$ matrix $A$, then $\rho(A)=\max \{|\lambda|: \lambda$ is an eigenvalue of $A\}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}=\rho(A) \tag{5.2}
\end{equation*}
$$

Let $\lambda$ be any eigenvalue of $A$, and $E_{\lambda}=\left\{\mathbf{u} \in \mathbb{C}^{N}:(A-\lambda I)^{m} \mathbf{u}=0\right.$ for some $\left.m>0\right\}$, then $\mathbb{C}^{N}=E_{\lambda} \oplus Z$ for some $A$-invariant subspace $Z$ of $\mathbb{C}^{N}$. We say that $\mathbf{u}$ has a component in $E_{\lambda}$ if $\mathbf{u}=\mathbf{u}_{\lambda}+\mathbf{z}$ with $\mathbf{u}_{\lambda} \neq 0$. It is clear that if $\mathbf{u} \in \mathbb{C}^{N}$ has a component in $E_{\lambda}$, then there is a constant $C>0$ such that $\left\|A^{n} \mathbf{u}\right\| \geq C|\lambda|^{n}$ for all $n>0$.

Lemma 5.2. Let $\lambda$ be the eigenvalue of $W_{p}$ such that $|\lambda|=\rho\left(W_{p}\right)$ and let $E_{\lambda}$ be defined as above. Suppose $\operatorname{dim} H(\tilde{\mathbf{v}})=2$. Then there exists $\mathbf{u}=\alpha \mathbf{b}_{0}+\beta \mathbf{b}_{1} \in$ $H(\tilde{\mathbf{v}})$, where $\mathbf{b}_{0}=[0,1,-1]^{t}, \mathbf{b}_{1}=[1,-1,0]^{t}$, such that $H(\mathbf{u})=H(\tilde{\mathbf{v}})$ and the corresponding $\mathbf{a}_{0}=\left[\alpha^{p}, \alpha^{p-1} \beta, \ldots, \alpha \beta^{p-1}, \beta^{p}\right]^{t}$ has a component of $E_{\lambda}$. For such $\mathbf{u}$, there is a constant $C>0$ such that

$$
C \rho\left(W_{p}\right)^{n} \leq \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p} \quad \text { for all } n>0
$$

Proof. We choose $p+1$ vectors $\mathbf{u}_{i}=\alpha_{i} \mathbf{b}_{0}+\beta_{i} \mathbf{b}_{1}, i=0, \ldots, p$, such that $H\left(\mathbf{u}_{i}\right)=$ $H(\tilde{\mathbf{v}})$ and

$$
\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i} \neq 0, \quad \text { for } i \neq j
$$

Then the corresponding vectors

$$
\boldsymbol{\gamma}_{i}=\left[\alpha_{i}^{p}, \alpha_{i}^{p-1} \beta_{i}, \ldots, \alpha_{i} \beta_{i}^{p-1}, \beta_{i}^{p}\right]^{t}, \quad 0 \leq i \leq p
$$

form a basis of $\mathbb{C}^{p+1}$ because the matrix with the vectors $\gamma_{i}$ 's as rows is a Vandermonde matrix

$$
A=\left(\begin{array}{ccccc}
\alpha_{0}^{p} & \alpha_{0}^{p-1} \beta_{0} & \cdots & \alpha_{0} \beta_{0}^{p-1} & \beta_{0}^{p} \\
\alpha_{1}^{p} & \alpha_{1}^{p-1} \beta_{1} & \cdots & \alpha_{1} \beta_{1}^{p-1} & \beta_{1}^{p} \\
\vdots & \vdots & & \vdots & \vdots \\
\alpha_{p}^{p} & \alpha_{p}^{p-1} \beta_{p} & \cdots & \alpha_{p} \beta_{p}^{p-1} & \beta_{p}^{p}
\end{array}\right)
$$

and $\operatorname{det} A=\prod_{0 \leq j, k \leq p}\left(\alpha_{j} \beta_{k}-\alpha_{k} \beta_{j}\right) \neq 0$. Hence, one of the $\gamma_{i}$ 's has a component of $E_{\lambda}$. Let $\mathbf{u}$ be the corresponding $\mathbf{u}_{i}$ and the first part of the lemma follows. To prove the second part, we observe that for any $J$ with $|J|=n$ and $0 \leq j \leq p$,

$$
\begin{aligned}
\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p-j}\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{j} & \leq \max \left\{\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p},\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{p}\right\} \\
& \leq\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p}+\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{p}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\left(\mathbf{a}_{n}\right)_{j}\right| & =\sum_{|J|=n}\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p-j}\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{j} \\
& \leq \sum_{|J|=n}\left|\mathbf{e}_{0} T_{J} \mathbf{u}\right|^{p}+\sum_{|J|=n}\left|\mathbf{e}_{1} T_{J} \mathbf{u}\right|^{p}=\left|\left(\mathbf{a}_{n}\right)_{0}\right|+\left|\left(\mathbf{a}_{n}\right)_{p}\right| \\
& =\sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p} \quad(\text { by }(5.1))
\end{aligned}
$$

It follows that $\left\|\mathbf{a}_{n}\right\|_{1}=\sum_{j=0}^{p}\left|\left(\mathbf{a}_{n}\right)_{j}\right| \leq p \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}$. Since $\mathbf{a}_{0}$ has a component of $E_{\lambda}$, there exists a constant $C>0$ such that

$$
C \rho\left(W_{p}\right)^{n} \leq\left\|W_{p}^{n} \mathbf{a}_{0}\right\|_{1}=\left\|\mathbf{a}_{n}\right\|_{1} \leq p \sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}
$$

For the 4 -coefficient dilation equation in (4.1), it is easy to check that $\operatorname{dim} H(\tilde{\mathbf{v}})=$ 0 if and only if $\left(c_{0}, c_{3}\right) \in\{(0,0),(1,0),(0,1),(1,1)\}$, and the solutions are characteristic functions ([LW, Lemma 3.3]). Hence $\operatorname{Lip}_{p}(f)=1 / p$. Also $\operatorname{dim} H(\tilde{\mathbf{v}})=1$ if and only if $c_{0}+c_{3}=1$ (Lemma 4.2), and in Proposition 4.3 we have given a formula of $\operatorname{Lip}_{p}(f)$ for this case. It remains to consider the case $H(\tilde{\mathbf{v}})=2$, which will complete all the cases for all 4 -coefficient scaling functions.

Theorem 5.3. Consider the 4 -coefficient dilation equation in (4.1) with the assumption that $\operatorname{dim} H(\tilde{\mathbf{v}})=2$. For $p$ a positive even integer, the equation has a (unique) $L_{c}^{p}$-solution $f$ if and only if $\rho\left(W_{p}\right) / 2<1$, and in this case

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\rho\left(W_{p}\right) / 2\right)}{-p \ln 2}
$$

Proof. Note that for any $\mathbf{u} \in H(\tilde{\mathbf{v}})$ and for any $\epsilon>0$, we have for large $n$

$$
\begin{array}{rlr}
\sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p} & =\left|\left(\mathbf{a}_{n}\right)_{0}\right|+\left|\left(\mathbf{a}_{n}\right)_{p}\right| & \\
& \leq\left\|\mathbf{a}_{n}\right\|_{1}=\left\|W_{p}^{n} \mathbf{a}_{0}\right\|_{1} \quad & \\
& \leq\left\|W_{p}^{n}\right\|\left\|\mathbf{a}_{0}\right\|_{1} & \\
& \leq\left\|\mathbf{a}_{0}\right\|_{1}\left(\rho\left({ }^{2}\left(W_{p}\right)+\epsilon\right)^{n} .\right. & \\
& (\text { by })(5.2))
\end{array}
$$

If we choose $\mathbf{u} \in H(\tilde{\mathbf{v}})$ as in Lemma 5.2, combining with Theorem A in Section 1, we have the first conclusion. The second assertion follows from Lemma 2.2, the estimation of $\sum_{|J|=n}\left\|T_{J} \mathbf{u}\right\|^{p}$ from above and Lemma 5.2.

Figure 3 shows the domain of $\left(c_{0}, c_{3}\right)$ for the existence of $L_{c}^{p}$-solutions for even integers using the above criterion $\rho\left(W_{p}\right) / 2<1$. The curves are $\rho\left(W_{p}\right) / 2=1$ corresponds to $p=2,4,6,10,20$, and 40 . Note that when $p \rightarrow \infty$ the limit is the triangular region which is the approximate region plotted in $[\mathrm{H}]$ for the existence of continuous 4 -coefficient scaling functions using the joint spectral radius. However, we are not able to prove this assertion yet, i.e., $\lim _{p \rightarrow \infty} \operatorname{Lip}_{p}(f)$ is the Hölder exponent. Also we do not have a criterion for the existence of an $L_{c}^{\infty}$-solution.

Figure 4 is the graph of $\operatorname{Lip}_{4}(f)$ plotted against the $\left(c_{0}, c_{3}\right)$-plane. It shows the overall picture of $\operatorname{Lip}_{4}(f)$ for the 4 -coefficient case. It looks similar to the graph of $\operatorname{Lip}_{2}(f)$ plotted in [LMW].

We remark that if $c_{0}>0, c_{3}>0$, and $1-c_{0}-c_{3}>0$, then $T_{0}$ and $T_{1}$ in (4.5) are non-negative matrices. Also the vector $\mathbf{u}$ in Lemma 5.2 can be chosen to be a positive vector. Hence (5.1) still holds if $p$ is a positive odd integer. Consequently, we have

Proposition 5.4. Consider the 4 -coefficient dilation equation (4.1) with $c_{0}>0$, $c_{3}>0$, and $1-c_{0}-c_{3}>0$. Suppose $\operatorname{dim} H(\tilde{\mathbf{v}})=2$, then for $p$ a positive integer,

$$
\begin{equation*}
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\rho\left(W_{p}\right) / 2\right)}{-p \ln 2} \tag{5.3}
\end{equation*}
$$

Without such positivity assumption on the coefficients, the expression in (5.3) does not necessarily give $\operatorname{Lip}_{p}(f)$ for $p$ odd integers. For example Figure 5a is the graph of $-\ln \left(\rho\left(W_{p}\right) / 2\right) /(p \ln 2), p=1, \cdots, 10$, of the scaling function corresponding to $c_{0}=0.5$ and $c_{3}=-0.4$. The points bounce up and down but $\operatorname{Lip}_{p}(f)$ should be convex in that region. Figure 5 b corresponds to Daubechies scaling function $D_{4}$ $\left(c_{3}<0\right)$. On this graph, the points are obtained by $-\ln \left(\rho\left(W_{p}\right) / 2\right) /(p \ln 2)$ while the curve is $\operatorname{Lip}_{p}(f)$ given by (4.7). It shows that for even integer $p$, they coincide. For odd integer $p$, the values obtained by (5.3) are different to $\operatorname{Lip}_{p}(f)$ but surprisely close (see Table 1). Also when $p \rightarrow \infty$, in our numerical and graphical experiments, the values obtained from $-\ln \left(\rho\left(W_{p}\right) / 2\right) /(p \ln 2)$, $p$ odd integers, seems to converge to $\operatorname{Lip}_{p}(f)$ rather rapidly.

Finally we remark that for the dilation equation with $N+1(N>3)$ coefficients, if $\operatorname{dim} H(\tilde{\mathbf{v}})=1$ then $\tilde{\mathbf{v}}$ is an eigenvector of both $T_{0}$ and $T_{1}$, say $T_{0} \tilde{\mathbf{v}}=a \tilde{\mathbf{v}}$ and $T_{1} \tilde{\mathbf{v}}=b \tilde{\mathbf{v}}$. Then the same technique as in the proof of Proposition 4.1 yields

$$
\operatorname{Lip}_{p}(f)=\frac{\ln \left(\left(|a|^{p}+|b|^{p}\right) / 2\right)}{-p \ln 2}
$$

for $1 \leq p<\infty$. For the case $\operatorname{dim} H(\tilde{\mathbf{v}}) \geq 2$, we can use a similar method to that in


Figure 3


Figure 4

Proposition 5.1 to obtain a $(p+1)^{N-2} \times(p+1)^{N-2}$ square matrix $W_{p}$, and Theorem 5.3 and Proposition 5.4 will still hold for $\operatorname{dim} H(\tilde{\mathbf{v}}) \geq 2$.


Figure 5a


Figure 5b

| $p$ | $\operatorname{Lip}_{p}(f)$ | value obtained <br> by $(5.3)$ |
| :---: | :---: | :---: |
| 3 | 0.874185416 | 0.892690635 |
| 5 | 0.749617426 | 0.750414497 |
| 7 | 0.692852392 | 0.692893269 |
| 9 | 0.661125656 | 0.661127939 |

## Table 1

## REFERENCES

[CD] A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J., 68 (1992), pp. 313-335.
[CH] D. Colella and C. Heil, Characterizations of scaling functions: Continuous solutions, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 496-518.
[D] I. Daubechies, in Ten lectures on wavelets, CBMS Reg. Conf. Ser. in Appl. Math. 61, SIAM, 1992.
[DGL] N. Dyn, J.A. Gregory, and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx., 7 (1991), pp. 127-147.
[DL1] I. Daubechies and J. C. Lagarias, Two-scale difference equation: I. Global regularity of solutions, SIAM J. Math. Anal., 22 (1991), pp. 1388-1410.
[DL2] , Two-scale difference equation: II. Local regularity, infinite products and fractals,
SIAM J. Math. Anal., 23 (1992), pp. 1031-1079.
[DL3] , On the thermodynamic formalism for multifractal, preprint.
[E] T. Eirola, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal., 23 (1992), pp. 1015-1030.
[H] C. Heil, Method of solving dilation equations, Prob. and Stoch. Methods in Analysis with Applications, NATO ASI Series C: Math. Phys. Sci., 372 (1992), pp. 15-45.
[He] L. Herve, Construction et régularité des fonctions d'échelle, SIAM J. Math. Anal., 26 (1995), pp. 1361-1383.
[J] S. Jaffard, Multifractal formalism for functions Part I, results valid for all functions; Part II, self-similar functions, Laboratorire de Math. App. (preprint).
[Ji] R. Jıa, Subdivision schemes in $L^{p}$ spaces, Adv. Comp. Math., 3 (1995), pp. 309-341.
[LMW] K. S. LaU, M. F. Ma, and J. Wang, On some sharp regularity estimations of $L^{2}$-scaling functions, SIAM J. Math. Anal., 27 (1996), pp. 835-864.
[LW] K. S. LaU and J. Wang, Characterization of $L^{p}$-solution for the two scale dilation equations, SIAM J. Math. Anal., 26 (1995), pp. 1018-1046.
[MP] C. A. Micchelli and H. Prautzsch, Uniform refinement of curves, Lin. Alg. Appl., 114/115 (1989), pp. 841-870.
[V1] L. Villemoes, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal., 23 (1992), pp. 1519-1543.
[V2] L. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal., 25 (1994), pp. 1433-1460.


[^0]:    * Received March 20, 1997; accepted for publication June 25, 1997.
    ${ }^{\dagger}$ Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong (kslau@math.cuhk.edu.hk).
    $\ddagger$ Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260.

