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Abstract 

Let {~,,},~1 be i.i.d. Bernoulli randoln variables. For ½</ ,<1,  let X ~.~i~1//',;, bc ,he 
discount sum and let ¢l/, be the distribution measure. It is known that if p ~ is a P.V. nmnber. 
then I~:, is continuously singular. In this paper we use a Markov chain technique to obtain !he 
precise L:-dimension of such measures. In particular for O {,/'5 - 1)/'2, we use a device of 
Strichartz et al. and the renewal equation to derive a formula for the L:'-dimension and :he 
entropy dimension of the corresponding /~/,. @ 1997 Elsevier Science B.V. 

1. Introduction 

Let { ,,},,= t be i.i.d. Bernoulli random variables, i.e., g,, takes values 0 and 1 ~,ith 

probability ?l each. For 0 < / ) < 1 ,  let X = ~a=j~ 1)~~ be the geometric discount sum of  

the g,,'s, and let ll:, be the corresponding distribution measure. I~, is the convolution 

o f  the sequence {1 - ) f(60 + 5/,~ }k=l of  point mass measures and is called an it!linitely 

conroh 'ed  Bernoull i  measure  (ICBM).  Such measures possess very intricate and inter- 

esting properties concerning their absolute continuity and singularity. The first important 

work on this was due to Jessen and Wintner in 1935. They showed that/~/, is always a 

continuous measure, and is either purely singular or purely absolutely continuous. For 
0 < [ ) <  I ~, /~/, is singular and is supported by a Cantor-type set on [0, p / ( l  p)], which 

i X is a binary number with random has Hausdorff dimension I In2 / lnp I .  For p ?, 

I It is clear that Ill.2 is a uniform distribution digits 0, 1 that occur with probabil i ty ?. 

on [0, 1]. Furthermore, it is easy to show that i f / )  = (1/2)  I'' ', for n 1,2 . . . . .  then /L,, 

is essentially an n-fold convolution of  t l l2  and is hence also absolutely continue, us. 

In view of  these examples of  increasing smoothness of  I*/,, there was a naive conjecture 

that for ] < o < l ,  I~:, is absolutely continuous. This was disproved by Erd6s (1939) 

by observing that the regularity of  t~/, depends on the algebraic properties of  t). Recall 
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that fl is called an algebraic' inteqer if  it is a root of  a polynomial L with integer coef- 
ficients and leading coefficient 1; assuming that L is of  smallest degree, we call /~' an 
alqebraic conjugate of  ,8 if  ,B' is another root o f  L. The following are two fascinating 

results in this direction. The first one is due to Erd6s (1939) and Salem (1962), the 
i 

second one is due to Garsia (1962): Suppose ~ < p < l  and [:;= p - I  is an algebraic 
integer with algebraic conjugates ~1,-.-,[]~- Then 

(i) [~ is a Pisot-Vijayaraqhavan (P. V.) number (i.e. 1131 > 1 and ]/4i] < 1, i =  1 . . . . .  s) 
if and only if fiv(~) 74 0 as I~{ -- '  oo where t~v is the Fourier transformation of  
/.t v. In particular, Itp is singular by the Riemann Lebesgue lemma. 

(ii) I f  [31]ll~j>l fli=2, then #~, is absolutely continuous. Note that the assumption 
actually implies that ][3i1 is greater than 1 for all i =  1 , . . . , s  (see (Garsia, 1962 

Lemma 4.7)), in contrast to case (i). 
17 The basic idea is that for each n, the values of  the sum ~ k = l  Pk~k in case (i) repeat 

very often so that tit, is singular, and in case (ii) the values do not repeat and are more 
or less equally spaced so that /.t v is absolutely continuous. In another direction, Erd6s 
(1940) showed that 
(iii) There exists P0 sufficiently close to I such that for almost all p 0 < p < l ,  /~F, is 

absolutely continuous. 
i 

He also made the conjecture that lip is absolutely continuous for almost all 2 < , o <  1. 
There was no progress on this problem for a long time. Recently interest has been 

re-kindled, however, due to the development of  the geometry of  fractals, dynami- 
cal systems and iterated function systems (cf. Alexander and Yorke (1984), Bovier, 
Falconer (1990), Hu (to appear), Lalley, Lau and Ngai (to appear) and the references 

there). Let 

~ ( x )  = pjx + b~, x E ~  d 

Sa~m be associated where 0 < p j < l  and bj E BU, j =  1 . . . .  ,m, be similitudes and let t Jsi=l 
weights for the -rs~-m Then there exists a unique compact subset K and a unique I..7 J./'= 1 " 

probability measure /~ satisfying 

K =  O Sj(K ) and I~= £ ajlJO i . S. -~ (1.1)  
i 1 j 1 

K is called a se l f  similar set and /a is called a se l f  similar nleasure (Falconer, 1990; 
Hutchinson, 1981). Both K and IL can be obtained through iteration of  Ss tm t 7 U=J, starting 
from any compact subset E in ~a  and any probability measure on E. For the case 

SI(x) px, S2(x)-~px +(1  - p), x E ~  (1.2) 

I with weights 2 each, the self-similar measure is actually the ICBM ttt,, modulo a 
scaling factor, because 

//1 -- p n~  ei,~/2(l-p) H COSk~  ) ; (~)  = ei~"2nHl cos k - - - ~ p  c)  and f i , , ( ~ )  , ,= ,  . 
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If  0 < p  < ~, K is a Cantor-type set and is the disjoint union o f  the two copies S t (K)  

and & ( K ) .  This nonoverlapping property of  the components has been extended to the 

so-called open set condition (Hutchinson, 1981 ), and is one of  the most fundamenlal 

concepts in the geometry of  fractals. On the other hand, very few results are known 
i without such a condition. The ICBM tit, with ~ < p < l  is the simplest important ex- 

ample of  the overlapping case (Nl[0, I] f-I Si [0, 1] /~ 0) and can be used as a pilot case 

to understand the more general situation (Lau and Ngai, to appear). 

For the recent developments, Solomyak (1995) solved Erd6s'  conjecture tbllowing 

(iii). When I~, is singular there are a number of  ways to interpret the exponent :, 

when 14v h .x  + It) ",~ ch ~ as h + 0. For example, locally 2 can be regarded as the 

the so-called local dimension of  tt at x, while globally, :~ is related to the ttausdorff 

dimension, entropy dimension, LS'-dimension, etc. The entropy dimension of  It,, \vhcil 

i~ I is a P.V. number was studied by Garsia (1963) and has been re-examinat.ed 

(in particular when p - i  _ ( ~ / ~  + I) /2 ,  the golden numberl  by Alexander and 5orke 

(19841, Alexander and Zagier (1991), Ledrappier and Porzio (preprint) and Przytycki 

and Unbanski (19891. The L2-dimension of  such measures has also been calculated 

by Lau (1991, 1993). In Lau (1991) the open set condition of  the iterated function 
! 

system is extended to a weaker separation condition which includes thc case that p 

is a P.V. number. 

In this paper we discuss two different ways to calculate the dilnensions of  the singular 

1CBM. We first use the Markov chain approach to obtain the exact L-~-dimension of  

the ICBM when p i is a P.V. number (Theorem 3.7). This simplilies the indirect 

approach m Lau (1993). For p (~/5 1).'2, Strichartz et al. (to appear) ha~c an 

innovative idea of  replacing the two maps in (1.21 by three maps that satisl~' the open 

set condition, which yields via thc self-silnilar identity (1.1) a complementary set of 

identities (see Eq. (4.2)).  By using this and the renewal equation, we obtain ~ lbrmula 

of  the Li'-dinaension and the entropy diinension for such /l,, (Theorem 4.11. 

We organize the paper as follows. In Section 2 we review some definitions o t  lhc 

dilnensions of  a measure and reformulate them into the setting we need. In Scction 3 

we consider the LX-dimension of  the [CBM generated by the P.V. nunlbcrs and in 

Section 4 we describe the Ll '-dilnension formula of  the ICBM corresponding to lhe 

golden number. The technical details concerning Section 4 are proved in Lau and Ngai 

(to appear).  In Section 5 we discuss some open problems and remarks. Wc also include 

several graphs that approximate the density of  the mcasures. 

2.  P r e l i m i n a r i e s  

Let tt be a positive bounded regular Borel measure oil ~ and let supplt {"1{ fa ..,~. : 

U is open and I t (U)  0} be the support of  It. For convenience we assume thai /l 

has a bounded support. If  it is absolutely continuous then the density of  It is liln;; .o 

/t(&;(.v)).2h for ahnost all x (with respect to Lebesgue measure), where Bt,(x) denc, tes 

the ball of  radius h centered at v: in this case t t ( t : l l , (x) i~ct t  as h - 0  . \Ve will 
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define some notions of  fractional density and dimension to handle the case where 
#(Bh(x)) ~ch ~, O~c~<~ 1. 

For h > 0 ,  let {xi=ih: iCY} be a lattice of  ~ and let Ei(h)(=Ei)=(xi-l,xi]. For 
1 ~<p<~xD, let 

SP(h ) = ~  It(Ei(h ) ) p 
i 

be the p-variation of/~. It is clear that when p =  1, Sl(h)= II/tll is the total variation 
of  #. We define the LP-dimension of/~ as follows: For 1 < p < o c ,  

In SP(h) 
dimp(/O = lim 

h~0+ ( p -  1 ) l n h '  

and for p = l ,  

d i m l ( # ) =  lim ~i{#(Ei)lnkt(Ei): Ei N supp/~ # 0} 
h-0+ I1~11 in h 

Also we let d i m ~ ( ~ t ) =  l imh~o-In  sup/~(Ei)/lnh. Note that diml@t) is also called the 
entropy dimension (R6nyi, 1957), dim2(/~) the correlation dimension, and dimp(/t), 
p >  1 the generalized Rdnyi dimension. Heuristically, diml(/ t)  is the limit of  dimp(/Z) 
as p ---+ 1 by L 'H6spi ta l ' s  rule. We can also define dimp(#), dimp(/O by replacing the 
lim with limsup and liminf. It is straightforward to check that for 1 < p < ~ ,  

dim_p(tt)=sup{ ~- . lim Sp(h) } p 1 h ~ o + ~  <co , 

d i m p ( / t ) = i n f { p _  '~ l ' 0 <  lim ~ } ; h ~ 0 +  

and dimp(/t) = :t/(p 1 ) if 

sp(h) 
0 <  lira ~< l~m < o c .  (2.1) 

h ~ O  ~ h ~ O  + 7 

The converse of  (2.1) is not true in general. The LP-dimension has a very useful 
alternative form in terms of  the integral 

IP(h ) = f l ( B h ( x ) )  p dx. 
- -  7 ~ C  

Proposit ion 2.1. For 1 < p < ~xD, 

lim 1 (lnlP(h) ) dimp(/~) = 
h~0+ p -  1 \ lnh 1 , 

and jot p = 1, 

(ln f l~(Bh(x))lnlt(Bh(x))dx ) 
d i m l ( # ) =  lira - 1 

h~O+ I1~11 lnh " 
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It is a direct consequence of the following lemma: 

Lemma 2.2. For 1 <~ p < cx), h > O, 

SV(h ) <~ 1 lP(h ) <~ 4PSP(h ). ( 2.2 ) 
17 

Furthermore/br ~l(~) <~ 1 and jor  ~: > O, there exists ho such that ~or 0 < h < ho, 

4 ~ y ( E i ( h ) ) l n y ( E s ( h ) )  <~ ~ #(Bh(x) ) lny (Bh(x) )dx  

<~ ~ t~( Ei( h ) ) In y( Ei( h ) ) + ~:, 
i 

where the sun,s are taken o~er all the Ei(h ) ha~ inq nonemptv intersection with supp I~. 

Proof.  We first observe that for x ~ -  ih. 

ll(E,(h)) ~ . . d ,  t~ (E i (h ) )dx~<~ . . ( l  ,u(Bh(x))dx<~ll(B2h(xi)). (2.3) 

By Jensen's inequality with (p(u)= lu] I', we have 

S " ( h ) < ~  ( ~ i  Y ( B h ( x ) ) ~ )  r " ~  ~:  l ' (Bh(x ) )V~  l-I/'(h)" 
i , , (hi  i (h)  h 

On the other hand, 

1 l/,(h) 1 ~ ~ y ( B h ( x ) ) P d x ~ < ~  . ,, - l~(B:~,(.xi)) ~< 4/~S~'(h) 
h h . ./hi i 

and the first assertion follows. For the second assertion, we use Jensen's inequality 
with q~(u) u In u, lt > 0  and the last inequality of  (2.3) to obtain 

1 L ~ l~(B2h(Xi))lntl(B2h(Xi))<~ h Y(Bl,(x))lnl~(Bh(x))dx" 

The left inequality now follows from qRu)÷  ~p(l)~ q~(u ÷ t'), u, ~,>0. For the right 
inequality we make use of  the fact that ~0(u) is negative and decreasing for 0 < u < e i. 
if all the atoms a of  # satisfy y{a t < e  -t,  then there exists h0 such that tbr 0 < h <  Ilo. 
l~(E,(h))<e -I for all i, and hence 

tl .  y (Bh(x ) ) lny (Bh(x ) )dx  ~ y(Bh(x))lnll(Bs,(x))d.v 

<~ ~ l~(Ei) lnl l (E,)dx= ~_,It(Ei)lnl~(l;',). 
, i 

If the measure contains atoms a such that y{a}~>e i then it can have at most two 
such a. We can calculate separately the intervals that contains these a ' s  and adiust the 
inequality by the ~:. 
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3. L Z - d i m e n s i o n  o f  I C B M  

For convenience we let ~0 = 0 .  Let X = ~k~_0 pn~ be the discount sum of  the 

Bernoulli random variables and let /zp be the corresponding distribution measure as in 

Section 1. With no confusion we will omit the subscript p in /% Let X, = ~'~=0 Pk~k 

and let /2, be the corresponding distribution. Then /~,, is the n-th convolution of  
1 " ~(6o + 6p~, ), 1 <~k<~n, 

1 #  . , 
I z , , { x } = ~  p%h: p~ :~=x ,  o k = 0  or 1, k 0 . . . .  n 

k = 0  

and {/2,,},,~ l converges to /t in distribution. 

Lemma 3.1. Let {/~,} and t2 be defined as above, then for n > 0 ,  

lt(Bp,,(x))<~lJ,,(Bv,,/(l p)(x))~12(Bzv,,/(i-v)(x)). 

Proof.  It suffices to show that 

{~,~: x(~o) c/3,,,~(x)} c_{~o: x,,(~o) ~ E,,, ~_,,~(x)} c_{~,~: x(oJ) ~ B2p,,:~ , ,(x)}. 

Indeed if X(~J3) E Bv,(x), then 

pn+ 1 p,~ 

IX,,(,,~) - xl  ~ I / , , ( ( o )  - / ( , ~ ) ) 1  + IX((o)  - xl ~< 1 - p + # '  1 - v 

The second identity can be obtained by the same argument. 

Using this lemma we can reduce the calculation of  the LP-dimension of  II to the 

discrete measures /1,,, 

Proposition 3.2. There exist Cj, C2 > 0  such that jor an), ICBM It and for any n >0 ,  

CI ~ ft,,(Ei(p" ))P <~ SP(p " ) <~ C2 ~ lt,,(Ei(p 'z ))P. (2.4) 
i i 

Consequently, 

and 

l E n In ~ i  I,,( i(P )) 
dimp(/0 ,liz~m n(p - 1 ) In p 

diml(tt) = lim ~ i  It,,(Ei(p")) ln,u,,(Ei(p")) 
n t ~ I1 In p 
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Let ~o = 
probabil i ty  

z , ,  

and let v,, 

2 ;7  

0 and let { ,,},,=l be i.i.d, random variables  taking values 1,0. 1 with 
1 I I respect ively.  Let 

~7~t,k,~, Z=kpkg;l<, 
X :{/ k = 0  

and v be the corresponding measures.  It is clear that Z,, = X,, X,',. Z 

X X'. v, I~,, * fi,,, and v = I~* fi where  X,', and X '  are independent ,  identical copies 
o f  X,, and X respectively,  and fi,,(E)= IX,,(-E). Let (Q, P )  be the corresponding prob- 
ability space for {.,,},, o. The fol lowing lermna is due to Garsia  (1962):  we include a 
p roo f  here for completeness .  

L e m m a  3.3. For  an), c > 0 ,  tllere exisl,s e l ,  ('2 .such thai 

C iS2(cp '') <~ P(IZ, ] < cp" )  ~< ( '2S2(cP").  

\ ~ "  ,Ok ~,l, , .V, /~.,/, II P r o o f .  Without  loss o f  general i ty we assume that c 1 Let _-,, z- ,a  0 

r v ~ ,  l, .~ ~'~ 0 or I .  then pa~:a and _v,, 2_~a=0P ~'l<, ~;a-. "k 

'" Ix,, 'i < d ' }  {~,,: I=,,I < * ' " }  = {x,, - x , , .  - .,,, 

Let Ei = ((i 1 )p", ip"], then 

/:,(1 
"/.~: (x ) dll,,(x )) dlL, , (x '  ) 

ZL. . , , (x  - x ' ) d l 6 , ( x ) )  dll , ,(x ')  

(/ ) = Z{:,: : !<-y/( x - x ' )d l l , , ( x )  d/~,,(x') 

l,,, * K,{z,,: I-',,I < # ' }  ,',,{--,,: I:,,L <# ' } .  

/ [ ; o r  and the first inequality follows. On the other hand, if" i-,I <t,". then z,, .v,, .~,,. 
.1 each such .v,, ~ Ek, .~,, can only be in Ek or in the two adjacent intervals. Schwarz 

inequality then yields 

v,, {~,,. Iz,, [< p"} ~ ~/~,,(E, )(~,,(E, ,) + / < ( & )  +/~,,(&+, ))~<; Z/~(E/, )-'. 
k /, 

The lemma now fol lows from Proposition 3.2. 



238 I(-S. Lau, A. Ho/Journal of Statistk'al Plannin# and Infi, rence 63 (1997) 231~46 

Theorem 3.4. Let  It be an I C B M  defined by ½ < p < 1. Then Jor any c > O, 

dim2(/~)= lim l nP( IZ" I<cP")  
,,~ ~ n In p 

Furthermore, I~ is absolutely continuous with dlt/dx c L2(~) i[ 'and only (1 r 

l i~  P(IZ,,I <cp') <.~xD. (3.1) 
I 1 ~ 0 0  pn 

Proof. The first assertion is a consequence of Proposition 3.2 and Lemma 3.3. The 
second assertion was proved by Kahane and Salem (1958) using Fourier transformation. 
For our alternative proof, we make use of  Lemmas 3.2 and 3.3 again to reduce the 
statement to: # is absolutely continuous and d#/dx  c L 2 ( ~ )  if and only if 

lira IF(x + h) - F(x  - h)j 2 dx <oc ,  
h ~ 0 +  ~x:, 

where F ( x ) =  # ( - o c ,  x]. This is a well-known theorem by Hardy and Littlewood (1928). 

In the following we will use the above theorem to calculate the L2-dimension for 
the special class of ICBM generated by the P.V. numbers. Let 

z"----~Pk~:~k:0'k:0 . . . . .  n, Iz, l<  p . 
A.= 

Let fl = p-~, we rescale A,, by multiplying fin by each element of A,, and let 

Note that p/(1 - p ) :  1 / ( f l -  1) is c in Theorem 3.4, and it has the following special 
property: 

Proposition 3.5. I f  lY,,[>~l/( fi 1), then ly,+ll>~l/([J - 1). 

Proof. The statement is a direct consequence of the following observation: 

[y,,+, I = ]/~y,, + g,,+~ I ~> ~ 1-- l 
f l - 1  f l - 1  

Let Y,,,= ~ _ 0 [ ~  ~ kgk, then {Y~}~l is a Markov chain. Proposition 3.5 says that 
once a path {Y,}~I steps outside the barriers + l / ( f l -  1), then it will never return; 
B is hence a set of inessential states of  the Markov chain (i.e. for y E B, there exists 
y~g~B such that y - ~ y ~  but y ~ 7 4 y  (Seneta, 1981, p.12). There may be finitely or 
infinitely many states in B. 

1 = p  1 Proposition 3.6. For 5 < P < 1 and fl a P.V. number, B is a finite set. 
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Proof. An elementary proof of  this proposition is given in (Lau, 1993, Theorem 2.3 ). It 

also follows from an interesting estimation of  Garsia [1962, Lemma 1.51 ]: Let ~ > 1 be 

an algebraic integer, ~l,...,a.,. be its algebraic conjugates and let a denote the number 

of  ~ such that I~il = 1. For any nth degree polynomial L with integer coefficients ~,,/ 

and height M :=max{lai l :  i =  1 . . . .  n}, if L ( a ) ¢  0, then 

(" ± 1)qH~, >l I '~ l r  + ' M '  

Now' if fi is a P.V. number, then for y,, ¢ y,, in B with n ~>m, 

- - P +k-. 
k =0 /~ =0 

:~ (letting "' We use this to define a polynomial L with coefficients gx -~,~ "k 0 for 

m<k<~n). In this case L has height at most 2. Also from the definition of  P.V. 

number, the set {fii: Ifiil > l} is an empty set and a - 0 .  It follows that 

iL(fi)l >1. H(  1 - Jfi, l ) .  C. 
2 ~, 

l.e. if y,, ¢ y,,, then lY,,- Ym] ~> C. Since all the elements of  B are bounded in between 

± l / ( f i  I), B must be a finite set. 

By using Propositions 3.5 and 3.6, we can define a substochastic matrix Q of  the 
y,  oc, Markov chain { ,}n=l on the inessential states B. For each v CB, we construct 

the corresponding row in Q as follows: let y '  = fly + g, g = 0, ± 1 ; if y '  ¢_ B, we ignore 
1 V t 2 1 d the state; if y ' c B  and g = l  or - 1 ,  we assign probability ~ to the . and if CB 

I instead. and g O, we assign 

As an example, let p = ( x / 5 -  1)/2. Then f i _ p - i  _ ( , f ~  + 1)/2 is a P.V. number, 
it satisfies [42 [ 4 -  1 = 0. By using this it is easy to show that B =  {0, l ,p,  -1, I'} 

and the corresponding substochastic matrix is 

1 0 1 0 

~2 ~ 2 0 0  . 

0 0 0 
0 0 2 

1 Theorem 3.7. For ~ < p < l  such that fi p-I  is a P.V. number, let /l be the corre- 
sponding ICBM. Let Q be the substoehastie matrix defined as above and h't ;, he 
the maximal eigenvalue oJ Q. Then the L2-dimension q,tl~ is Iln2/ln Pl- 
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Proof.  It follows from Seneta (1981, p.121) that 

p([znl P"+~ <l-p)=P(lY'l<[~l~-l)=V°Q"l' 
where v0 is the row vector which equals 1 at state 0, and 0 at the other states y E B. 
Let 2 be the positive maximal eigenvalue of  Q. 

If  Q is irreducible, then there exist a left eigenvector u/ and a right eigenvector u,- 
o f  Q corresponding to 2 such that each coordinate of  these two eigenvectors is strictly 
positive. From this we see that for some positive constants CI, C2, 

Cl voQ"ur <. voQ"l <~ C2u~Q"l. 

This implies that voQ~l is o f  order 2". For ~ =  [lnZ/lnpl ,  

P'+ _ _  p t lZnl  < P"+~ P ( Z , , I < ~ )  ,, , ~ p ,  
~< lira < o c ,  (3.2) 0 < lim 

n ~ o c )  

and hence 

pn+ i 
l nP ( l / n l  < V~p) 

dim2(/~) = lira = ~. (3.3) 
,,~o~ n In p 

I f  Q is reducible, for simplicity, we assume Q can be reduced into two components 

° . 

where Ql and Q2 are irreducible, with the 0th row corresponding to state 0, which 
reaches all the states. It is easy to prove (3.2) from this, and (3.3) follows. 

In the above example of  p = ( , / - 5 -  1 )/2, we can use symmetry to identify the states 
- I  and - p  with 1 and p. The corresponding matrix QI on {0, l ,p}  is given by 

=~ 0 . 

2 

(Q~ is obtained by cutting the last two rows and flipping the last two columns for 
states - 1  and - p  to the columns for 1 and p.)  These two matrices have the same 
maximal eigenvalue which is the larger positive root o f  the polynomial 

(42) 3 2(42) 2 2(42) + 2 = 0. (3.4) 

By Theorem 3.7, dim2(p) [ln 2 / In  Pl- The reduction to the smaller matrix also works 
for the other P.V. numbers (Lau, 1993). Table 1 gives a list o f  P.V. numbers for 
which dim2(/O has been calculated, using Theorem 3.7. The minimal polynomial is 
the defining equation for [~- -p-J .  (The fourth row is the case of  the golden number.) 
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Table  1 

241 

Min. Po lynomia l  p Size o f  Q '  4 i  dime(jr , , )  

v 5 - x  4 . . .  1 • 0 0 .5086604  6 2 .0573712 0 ,9835654 

v 4 .v ~ - . .  I 0 0 .5187901 5 2 .1118009 0 .9733295 

v 3 - .v 2 v I 0 0 .5436890  4 2.2226941 0 .9642200 

v 2 .x I 0 0 .6180334  3 2 .4811943 0,992399-I 

.v ) . . . .  . . . .  I 0 0 .6823275 25 2 .7302333 0,99g I 163 

x 4 - .v ~ 1 0 0 .7244919  627 2 .8979776 0 ,9999895 

x 3 v I 0 0 .7548776  90 3 .0195190 0.9991)~0 

4. The  golden number  

In this section we will give a fornmla of  the U'-dimension of  the ICBM correspond- 

ing to p = (x/5 1)/2. The technique is to use the self-similar identity (1.1) to obtain 

a functional equation: the renewal equation (Feller, 1971). We will first use the simpie 
I 

case 0 < p < 5 to demonstrate the idea. Let SI, $2 be the similitudes defined as in (1.2) 

and let with 0 < ? < _~ 

, /  q,~(h)  = U : 7  t~(&,(x)) p 

By using 

dr. 

It ½( / l oS ( l+ tLoS2  ~) and S I [ 0 ,  I ] U 3 S 2 [ 0 , 1 ] = f J ,  

we have for 17 sufficiently small, BI,(S i- l ( x ) ) ~  Bh(S21(x))= (j and 

(4.1) 

1 t l'(la(B/,(p-lx)) + I~(BI,(p l(x - (1 p))))/)d.v cp~(h)  
2/)h t+~ . l 

_ 1 ./l~(Bh(p t 2,)h,+~ (.fI '(B',(P - ' x ) ) vdx÷  " (x (1 - p))) )v  d r )  

,, / 
21,_1h1+~. tt(Bh.v,(x))Vdx (by a change of  variables 

2 / ) - I  7 " 

If we choose 3~ = I(P l ) ln  2 / lnp l ,  then the above multiplicative periodicity implies 
that 

0 < lim qs~)(h)~< lim c/¢~)(h) < ..>o, 
t~ , () ~ h ~ 0 

and by (2.1) and Lemma 2.2, tile U'-dimension o f / I  is [In2/lnp[ for t ~  1. 
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When p = ( x / 5  1)/2, the maps $1,$2 do not satisfy the disjointness condition in 
(4.1) and the second equality in the above calculation will not hold. To overcome this, 
we make use of  a device of  Strichartz et al. (to appear): Let 

T o x : S i g l x = p 2 x ,  

TlX = S2SISIX = SIS2S2x = p3 x -7 p2, 

T2x : 3232x : D2X ~- (1 - p2 ). 

Note that ~(0, 1), i = 0 ,  1,2 are the three intervals [0, p2], [p2,p] and [p, 1], and that 

(0, 1) is the disjoint union of  these three intervals. The disjointness condition in (4.1) 
is satisfied (excluding the two end points). On the other hand, the self-similar identity 
in (4.1) is reduced to the following "second order" self-similar identities defined by 
the T/'s: For A C_[0, 1], 

[ U(r0~A)- 
#(TI T~A) 
/2(T2 TiA )_ 

[~(ToA)] 
=Pi [/2(T~A) / , (4.2) 

[_ kt(T2A) J 

where 

I! :1 [:i] [! 
! 0 0 0 ~ 5 0 

l l and P2 = I Po:  ~ , P t =  ~ ~ • 

1 l 0 

It follows from (4.2) that for A C_[0, 1] and for J = ( j l  . . . . .  j k )  with j i  = 0  or 2, 

# ( TI Tj T~ A ) = c j la ( TI A ) where ca = ~ [0, 1,0] Pj (4.3) 

where Tj = Tj, . . .  ~ and likewise for Pj. To calculate the LP-dimension of  kt, we use 

(4.2) to produce a functional equation for f0' t2(Bh(x))P dx  as in the proof  of  the first 
paragraph. Observe that 

/0 /0 = p2 tl(Bh("fox)) p dx  + p3 ]4(Bh(TIx)) p dx  + p2 p(Bh(T2x))  p dx. 

(4.4) 
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Let 

@~,~)(h)=h-i~.]o it(Bh(Tix))Pdx, i=O,  1, 2. 

Then 4'~;'(h) q ~ l ( h )  and 4)l~)(h) dominates the other two (see the second picture at 
the end of Section 5, the three ~!~l(h) 's  are determined by tl on the three intervals 
[0, p2], [p2  p] and [p, 1] respectively). By repeating the above argument of  splitting 
the interval [0, 1] of  4)I ~) into three pieces as in (4.4), applying (4.2), (4.3) and using 

the change of  variables, we have 

4- o( h'3). (4.5) 
~,=0 I,jl=k / 

To solve @I ~), we use x =  - - l nh  to change the equation into the fol lowing convolution 
equation (renewal equation): 

f ( x )  J ( x  y )dcr (y)  + S ( x ) ,  x~>0 

where f ,o- ,  and S are defined in the obvious way; S(x) is a continuous integrable 
function with l i m , - ~  S(x)  = 0. In order to have a nontrivial bounded solution, a must 
be a probability measure (Feller, 1971 ). This implies that if we take ( p , ~ )  such that 

F ( p , ~ ) : =  ~ .;, p-.C2x~3t~=l, (4.6) 
A-=0 I 

we havc 

0 < lira q~l~)(h)~< lira 4'l~)(h) < vc. 
t1-- ~()- h ~ 0 +  

From this we can apply (2.1) and Lemma 2.2 to obtain 

Theorem 4.1. For p = ( , , ~ -  1)/2. Suppose p > O, then there exists a unique ~ .st,'h 

that F(p ,  ~) 1 and dimp = :~/(p - 1 ). 

The derivation of Eq. (4.5) and the proof of  the theorem involves some technical 
estimations, the details are given by Lau and Ngai. By using the theorem we can prove 
the following result which is useful for computation. 

Theorem 4.2. I J p  is a nonnegatit?e integer, then F(p,:~) 1 can he reduced to a 

poO,nomial equation, and the sohttion ~ corresponds to the larqest positit'e root ~?/ 
the polynontial. 

For example if p 2, then the polynomial equation is (4p ~)3 _ 2(4p~)2 2(4p~) 

2 0 (the same as in (3.4)) and dim:(i t)  ~ 0.99240. If p = 3 ,  then correspondi'ag 
equation is(Sp~) 3 - 2(8p~) 2 4(8p ~) + 2 -  0. and dim3(It) ~ 0.98971. 
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In Section 2 we mentioned that heuristically the entropy dimension is the limit of  the 

LP-dimension as p--+ 1 using the L'H6spital 's  rule. In the present case the statement 
can be justified and we have 

Proposition 4.3. Let  l~ be defined as above, then 

d i m l ( l ~ ) = & k ~ o ( [ j ~ l _ z c j l n c j )  " 

There are different formulae for the entropy dimension (Garsia, 1963; Alexander 

and Yorke, 1984; Alexander and Zagier, 1991; Ledrappier and Porzio). Using the 

above formula we can calculate that dim1(10 ~ 0.99571 which is compatible with 
the previous result. Also Hu (to appear) used an algebraic method and showed that 

d i m ~ ( # )  = - ( 1 / 2 ) -  In 2 / In  p ~ 0.9404. It is seen that the spectrum of  LP-dimension 

lies in a very narrow band close to 1. 

5. Remarks and open problems 

The technique to reduce the overlapping case to a nonoverlapping case in the last 

section is quite restrictive. Besides the golden number, another P.V. number has been 
found to have the same property (p-J  satisfies x 3 -  2x 2 + x -  1 = 0), but most of  them 

do not. 

Question 1. Might one obtain an explicit formula of  dimp(/O as in Theorem 4. l where 

/~ is generated by a P.V. number? 

In Section 3, the calculation of  the L2-dimension depends on Proposition 3.6 that 

the states in B is a finite set. 

Question 2. Does this property characterize the P.V. numbers? 

A positive answer would give a new characterization o f  the P,V. number, however a 

negative answer would be even more interesting because it would give a new singular 

ICBM. 
Finally we return to the absolutely continuous case. Although Solomyak (1995) 

proved that for almost all ½ < p < 1, the corresponding ICBM is absolutely continuous, 
his proof does not offer any number explicitly. A very natural and important question 

is 

Question 3. Is the ICBM corresponding to ½ < p < 1 where p is a rational number 
absolutely continuous? 

In the following we draw the graphs (Figs. 1 and 2) of  the approximate densities, 
2 and t l ( x - h , x + h ) / 2 h  for h small, of  the ICBMs corresponding to p = ½, ( ~ / 5 - 1 ) / 2 ,  

3. It is seen that in the case p = ~, the measure is very singular and is concentrated on 
the Cantor set in a uniform manner; this can be used to explain that the LP-dimension 
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( = I l n2 / lnp I  ) is independent o f  p (see the first paragraph of  Section 4). For the 

case p ( , / 5 -  1)/2, tt is also singular and is concentrated on a dense subset o f [0 ,  1], 
which is composed of  sets of  different local dimension; it is a muh(/ i 'actal  measure  

(Lau and Ngai, to appear). For the c a s e s  p : ~ and p = 4' the pictures suggested that 
both measures are absolutely continuous, as is asked in Question 3. 
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U n i v e r s i t y .  F ina l ly ,  t he  f i rs t  a u t h o r  w o u l d  l ike to e x p r e s s  h is  d e e p e s t  g r a t i t ude  to 

P r o f e s s o r  C .R.  R a o  f r o m  w h o m  he  l e a r n e d  the  a p p l i c a t i o n  o f  f u n c t i o n a l  e q u a t i o n s  

in p r o b a b i l i t y  a n d  s ta t i s t ics .  
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